Two-component polariton condensate in an optical microcavity

dc.citation.firstpage53624en_US
dc.citation.journalTitlePhysical Review Aen_US
dc.citation.volumeNumber89en_US
dc.contributor.authorZhang, Yong-Changen_US
dc.contributor.authorZhou, Xiang-Faen_US
dc.contributor.authorGuo, Guang-Canen_US
dc.contributor.authorZhou, Xingxiangen_US
dc.contributor.authorPu, Hanen_US
dc.contributor.authorZhou, Zheng-Weien_US
dc.contributor.orgRice Quantum Instituteen_US
dc.date.accessioned2014-08-01T19:09:24Zen_US
dc.date.available2014-08-01T19:09:24Zen_US
dc.date.issued2014en_US
dc.description.abstractWe present a scheme for engineering the extended two-component Bose-Hubbard model using polariton condensate supported by an optical microcavity. Compared to the usual two-component Bose-Hubbard model with only Kerr nonlinearity, our model includes a nonlinear tunneling term which depends on the number difference of the particle in the two modes. In the mean-field treatment, this model is an analog to a nonrigid pendulum with a variable pendulum length whose sign can be also changed. We study the dynamic and groundstate properties of this model and show that there exists a first-order phase transition as the strength of the nonlinear tunneling rate is varied. Furthermore, we propose a scheme to obtain the polariton condensate wave function.en_US
dc.identifier.citationZhang, Yong-Chang, Zhou, Xiang-Fa, Guo, Guang-Can, et al.. "Two-component polariton condensate in an optical microcavity." <i>Physical Review A,</i> 89, (2014) American Physical Society: 53624. http://dx.doi.org/10.1103/PhysRevA.89.053624.en_US
dc.identifier.doihttp://dx.doi.org/10.1103/PhysRevA.89.053624en_US
dc.identifier.urihttps://hdl.handle.net/1911/76319en_US
dc.language.isoengen_US
dc.publisherAmerican Physical Societyen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.titleTwo-component polariton condensate in an optical microcavityen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevA.89.053624.pdf
Size:
1.31 MB
Format:
Adobe Portable Document Format
Description: