Two-component polariton condensate in an optical microcavity

dc.citation.firstpage53624en_US
dc.citation.journalTitlePhysical Review Aen_US
dc.citation.volumeNumber89en_US
dc.contributor.authorZhang, Yong-Changen_US
dc.contributor.authorZhou, Xiang-Faen_US
dc.contributor.authorGuo, Guang-Canen_US
dc.contributor.authorZhou, Xingxiangen_US
dc.contributor.authorPu, Hanen_US
dc.contributor.authorZhou, Zheng-Weien_US
dc.contributor.orgRice Quantum Instituteen_US
dc.date.accessioned2014-08-01T19:09:24Z
dc.date.available2014-08-01T19:09:24Z
dc.date.issued2014en_US
dc.description.abstractWe present a scheme for engineering the extended two-component Bose-Hubbard model using polariton condensate supported by an optical microcavity. Compared to the usual two-component Bose-Hubbard model with only Kerr nonlinearity, our model includes a nonlinear tunneling term which depends on the number difference of the particle in the two modes. In the mean-field treatment, this model is an analog to a nonrigid pendulum with a variable pendulum length whose sign can be also changed. We study the dynamic and groundstate properties of this model and show that there exists a first-order phase transition as the strength of the nonlinear tunneling rate is varied. Furthermore, we propose a scheme to obtain the polariton condensate wave function.en_US
dc.identifier.citationZhang, Yong-Chang, Zhou, Xiang-Fa, Guo, Guang-Can, et al.. "Two-component polariton condensate in an optical microcavity." <i>Physical Review A,</i> 89, (2014) American Physical Society: 53624. http://dx.doi.org/10.1103/PhysRevA.89.053624.
dc.identifier.doihttp://dx.doi.org/10.1103/PhysRevA.89.053624en_US
dc.identifier.urihttps://hdl.handle.net/1911/76319
dc.language.isoengen_US
dc.publisherAmerican Physical Society
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
dc.titleTwo-component polariton condensate in an optical microcavityen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevA.89.053624.pdf
Size:
1.31 MB
Format:
Adobe Portable Document Format
Description: