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Two-component polariton condensate in an optical microcavity
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We present a scheme for engineering the extended two-component Bose-Hubbard model using polariton
condensate supported by an optical microcavity. Compared to the usual two-component Bose-Hubbard model
with only Kerr nonlinearity, our model includes a nonlinear tunneling term which depends on the number
difference of the particle in the two modes. In the mean-field treatment, this model is an analog to a nonrigid
pendulum with a variable pendulum length whose sign can be also changed. We study the dynamic and ground-
state properties of this model and show that there exists a first-order phase transition as the strength of the
nonlinear tunneling rate is varied. Furthermore, we propose a scheme to obtain the polariton condensate wave
function.
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I. INTRODUCTION

As a kind of new state of matter, Bose-Einstein condensa-
tion (BEC) in a dilute gas of trapped atoms is able to exhibit
quantum phenomena on macroscopic scales [1–4]. Different
from pure single-particle behavior, the interparticle interaction
between condensate atoms gives rise to many intriguing
nonlinear phenomena. One important example is the dynamics
of a condensate trapped in a double-well potential. In this
system, the condensate undergoes either Josephson oscillation,
where the population oscillates sinusoidally between the two
wells, or self-trapping in which most atoms remain trapped in
one of the wells. This has been theoretically predicted [5]
and experimentally demonstrated [6–8]. Recently, in such
a double-well model, the quantum phase transition (QPT)
and dynamics induced by atom-pair tunneling had also been
theoretically investigated [9,10].

In recent years, BEC of microcavity polaritons has been
experimentally demonstrated [11–13]. As a kind of bosonic
quasiparticle, the polariton represents the excitation of the
eigenmodes of the light-matter system inside the microcavity,
which can be manipulated and generated by the external laser
field. The interaction between the polaritons can take the form
of Kerr nonlinearity, which occurs if atoms with a specific level
structure interact with light [14]. Such kinds of controllable
and strong Kerr nonlinearity can be used to simulate strongly
correlated many-body models in photon-coupled microcavity
arrays [15].

In this paper we present a scheme for simulating the
tunneling between two polariton condensates in the micro-
cavity system. Here, compared with the case of BEC in a
double-well potential, two spatially localized bosonic modes
are replaced with two different modes of polaritons in the
same cavity. Under proper arrangement, the effective nonlinear
tunneling between the two polariton condensates can be easily
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induced and controlled by external fields. In our work, we
derive a two-mode model that describes the system. A salient
feature is that the tunneling rate between the two modes
takes a nonlinear form that depends on the difference of the
population in the modes. Under the mean-field approximation,
such a nonlinear Hamiltonian will be reduced to a new
nonrigid pendulum model in which not only the magnitude,
but also the sign of the pendulum length, can be changed.
This nonlinear tunneling directly leads to the emergence of
new dynamic phases, in addition to Josephson oscillation and
self-trapping.

Our paper is organized as follows: In Sec. II we give out a
physical realization for the extended two-component Bose-
Hubbard model (ETC-BHM) in the microcavity polariton
system. In the regime of polariton condensate, we investigate
the semiclassical behavior and dynamical properties of this
model in Secs. III and IV, respectively. Section V displays
the ground-state properties of ETC-BHM. Here, we find
that there is a first-order quantum phase transition in the
proper coefficient regime. In Sec. VI we present a scheme to
extract the information on polariton condensate wave function.
Finally, we conclude in Sec. VII.

II. MODEL HAMILTONIAN

We consider an ensemble of Na bosonic atoms inside
a single-mode optical cavity with the frequency ωc. As
schematically shown in Fig. 1, each atom has seven relevant
hyperfine energy levels, three of which (states |1〉, |2〉, and |3〉)
belong to the electronic ground manifold, and the other four
(states |4〉, |5〉, |6〉, and |7〉) belong to the electronic excited
manifold. The ground states |1〉, |2〉, and |3〉 are dipole coupled
to the excited states |4〉, |5〉, and |6〉, respectively, by the cavity
field, with corresponding coupling strengths g14, g25, and g36.
States |2〉 and |3〉 are coupled to |4〉 by external laser fields
with coupling strengths �24 and �34, respectively. Finally,
within the excited manifold, states |5〉 and |6〉 are coupled
to |7〉 by microwave fields with corresponding coupling
strengths �ν1 and �ν2. The total Hamiltonian that describes
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this system can be written as

H = ωc

(
a†a + 1

2

)
+

Na∑
j=1

{
7∑

i=1

ωi |i〉jj 〈i| + [�24|2〉jj 〈4| cos(ωL1t) + �34|3〉jj 〈4| cos(ωL2t) + H.c.]

+ [�ν1|5〉jj 〈7| cos(ων1t) + �ν2|6〉jj 〈7| cos(ων2t) + H.c.] + [(g14|1〉jj 〈4| + g25|2〉jj 〈5| + g36|3〉jj 〈6|)a† + H.c.]

}
. (1)

Here, a and a† are annihilation and creation operators for
the cavity field, and ωLi

and ωνi
(i = 1,2) refer to the

frequencies of the external laser fields and the microwave
fields, respectively.

Under the situation that the fields are weak, the atoms
mostly occupy the ground level |1〉. In the Appendix, we will
show that under proper conditions, the system can described
by an effective two-mode Hamiltonian:

Heff ≈ V1

2
P

†2
1 P 2

1 + V2

2
P

†2
2 P 2

2 + UP
†
1 P1P

†
2 P2

+ (N − 1)T +[P †
1 P2 + P

†
2 P1]

+ T −[P †
1 (P †

1 P1 − P
†
2 P2)P2 + P

†
2 (P †

1 P1 − P
†
2 P2)P1],

(2)

where N = 〈P †
1 P1 + P

†
2 P2〉 is the total number of the po-

laritons. (Note that the total number operator P
†
1 P1 + P

†
2 P2

commutes with the effective Hamiltonian Heff , so we could
replace it with its expectation value N , which is a constant),
and in terms of the cavity photon operator and the collective
atomic operators,

S1i = 1√
Na

Na∑
j=1

|1〉jj 〈i|, (3)

FIG. 1. (Color online) Schematic diagram for the energy levels
of the ensemble of the atoms trapped in the microcavity. The cavity
mode with frequency ωc drives the transitions: |1〉 ↔ |4〉, |2〉 ↔ |5〉,
and |3〉 ↔ |6〉 with strengths g14, g25, g36 and detunings δ, �5,
�6, respectively. The driving laser fields �24 and �34 induce the
transitions |2〉 ↔ |4〉 and |3〉 ↔ |4〉 with two-photon detuning ε. The
microwave fields �ν1 and �ν2 induce the transitions |5〉 ↔ |7〉 and
|6〉 ↔ |7〉 with detuning �.

the creation operators for the two polariton modes are defined
as

P
†
1(2)

.= 1

2

( g

ω
± 1

)
S
†
12 + 1

2

( g

ω
∓ 1

)
S
†
13 − �√

2ω
a†, (4)

where ω =
√

g2 + �2, and for simplicity we have taken
�24 = �34 ≡ √

2� and g = √
Nag14. In the weak-field limit,

the collective atomic operators obey the bosonic commutation
relation: [S1i , S

†
1j ] = δij , [S1i , S1j ] = 0, and [S†

1i , S
†
1j ] = 0,

from which one can readily show that the polariton operators
also satisfy [Pi,P

†
j ] = δij (i,j = 1,2).

We name Hamiltonian (2) the ETC-BHM. In the ETC-
BHM, the first three terms depict the Kerr nonlinearity. The
terms proportional to T + represent the linear “tunneling” or
the conversion between the two modes with a tunneling rate
given by (N − 1)T +. The terms proportional to T − can be
regarded as a nonlinear tunneling term whose effect is to
convert one mode into the other, however, with a conversion
rate proportional to the population difference between the two
modes. In the Appendix, we provide an intuitive picture to
explain the physical origin of various terms. It is the distinct
effects induced by the nonlinear tunneling term that we will
pay particular attention to.

III. SEMICLASSICAL HAMILTONIAN

We confine our discussion on the ETC-BHM to the regime
of polariton condensate. Under this situation, the mean-field
treatment is suitable. To this end, we replace the operators in
Hamiltonian (2) by their respective expectation values: Pα →
〈Pα〉 = √

Nα(t)e−iθα (t) (α = 1,2), with Nα(t) and θα(t) being
the αth polariton condensate’s occupation number and phase,
respectively [5,16,17]. The equations of motion can be easily
derived as

dξ

dt
= 2N (T + + T −ξ )

√
1 − ξ 2 sin θ, (5)

dθ

dt
= N (V1 − V2)

2
+ N (V1 + V2 − 2U )

2
ξ

− 2N
T +ξ − T −(1 − 2ξ 2)√

1 − ξ 2
cos θ . (6)

Here, ξ = N1(t)−N2(t)
N

is the population difference and θ =
θ2(t) − θ1(t) is the relative phase between the two condensates.
In classical mechanics, the above two ordinary differential
equations can be recast into the canonical form by the
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Hamiltonian equation

dξ

dt
= −∂Hc

∂θ
,

dθ

dt
= ∂Hc

∂ξ
, (7)

where the corresponding semiclassical Hamiltonian is

Hc = N (V1 − V2)

2
ξ + N (V1 + V2 − 2U )

4
ξ 2

+ 2N (T + + T −ξ )
√

1 − ξ 2 cos θ . (8)

In the case of equal intracomponent interaction strengths, i.e.,
V1 = V2, the Hamiltonian (8) can be simplified as

Hc = cξ 2 − d cos θ, (9)

with

c = N
V1 + V2 − 2U

4
, (10)

d = −2N (T + + T −ξ )
√

1 − ξ 2 . (11)

Equation (9) is analogous to the Hamiltonian of a nonlinear
pendulum in which ξ and θ represents the pendulum’s angular
momentum and tilt angle, respectively. Here, d can be regarded
as the effective length of the pendulum. Importantly, both the
magnitude and the sign of d depends on ξ . The nonlinear
nature manifests itself in the fact that d is not a fixed constant.

At this point, it is instructive to compare our model with
another widely studied model, the double-well Bose-Hubbard
model (DW-BHM) [5], which describes an atomic condensate
confined in a double-well potential. The Hamiltonian of the
DW-BHM can be written as

HDW = Elb
†
l bl + Erb

†
rbr + Vl

2
b
†2
l b2

l + Vr

2
b†2

r b2
r

− t(b†l br + b†rbl) . (12)

Here subindicies l and r represent the left and right well,
respectively. El,r are the bare potential energy of the wells,
Vl,r are Kerr nonlinear interaction coefficients, and t is the
tunneling rate between the well. Following a similar mean-
field treatment, we obtain the corresponding semiclassical
Hamiltonian as

H DW
c =

(
El − Er + N

Vl − Vr

2

)
ξ + N

Vl + Vr

4
ξ 2

− 2t
√

1 − ξ 2 cos θ, (13)

which can be simplified under the symmetric double-well cases
(El = Er and Vl = Vr ):

H DW
c = N

Vl + Vr

4
ξ 2 − 2t

√
1 − ξ 2 cos θ . (14)

This can also be regarded as a Hamiltonian for a nonlinear
pendulum, where the effective pendulum length is given by
dDW = 2t

√
1 − ξ 2.

When we compare the two sets of equations, we can see
that the key difference between the two models lies in the
nonlinear tunneling term in Hamiltonian (2) for our model,
which is absent in the DW-BHM. As a consequence, in
the nonlinear pendulum analog for ETC-BHM, the effective
pendulum length d can have either sign, whereas dDW for the

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

ξ

d

dDW

dETC: |T+|>|T−|

dETC: |T+|<|T−|

FIG. 2. (Color online) The schematic diagram for the odd radius
of ETC-BHM. The red dot-dashed line depicts the effective pendulum
length of DW-BHM vs the angular momentum ξ . The blue-solid
(blue-dashed) line depicts the relationship between the effective
pendulum length and the angular momentum for the ETC-BHM when
| T + |>| T − | (| T + |<| T − |). Here d is normalized by NU .

DW-BHM is always non-negative. This situation is illustrated
in Fig. 2. The positive effective pendulum length implies that
the stable equilibrium point is at θ = 0 (modulo 2π ), whereas
for negative effective pendulum length, stable equilibrium
occurs at θ = π (modulo 2π ). As we will show later, in our
model, d can change sign as parameters are tuned, which
induces a first-order phase transition when the ground state
switches between θ = 0 and π .

IV. DYNAMICAL PROPERTIES

To illustrate the dynamical properties of the system, we will
focus on the case with V1 = V2 and again use the pendulum
analog and introduce two types of fundamental dynamical
modes: “oscillation” mode and “trapping” mode. Denote
x = d sin θ and y = d cos θ . Thus, within a single dynamical
period, we investigate the trajectory of the pendulum bob
around the axis in the x-y plane. When the winding number of
the trajectory around the axis is zero, the mode is defined as the
oscillation mode, while the trajectories with winding number
±1 correspond to the trapping modes. Two kinds of canonical
modes are Josephson oscillation (JO) and self-trapping (ST),
which exist even when only the linear tunneling terms are
present. The JO amounts to the pendulum bob’s vibrating along
an arc-shaped segment which goes through some dynamical
equilibrium point. The ST corresponds to the case in which
an initial angular momentum is sufficiently large such that the
pendulum bob reaches the top position and continues to rotate
with a nonvanishing angular momentum.

We now focus on the effects of the nonlinear tunneling. For
simplicity, we fix the value of T + to some positive constant.
Under a fixed T + and with V1 = V2, Hamiltonian (8) is
invariant when T − → −T − and ξ → −ξ . Hence we just focus
on the case with negative T −. We consider two cases: (1) weak
nonlinearity with |T −| � T + and (2) strong nonlinearity with
|T −| > T +.
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FIG. 3. (Color online) (a) The energy distribution of ETC-BHM,
Hc

NU
, when T − = 0, V1 = V2 = 5U

4 , and T + = V1+V2−2U

40 ; (b, c) the
corresponding effective pendulum trajectories of the white contour
and the purple contour in (a), respectively. The red dot in (b) and (c)
represents the pivot of the pendulum. x and y are in units of U .

A. Weak nonlinear case

We first consider the weak nonlinear case with |T −| �
T +. At T − = 0, the effective pendulum length is d =
−2NT +√

1 − ξ 2 and the ETC-BHM reduces to the DW-
BHM. In this situation, the energy contour lines are depicted
in Fig. 3(a). There are two kinds of dynamical modes: JO and
ST. For JO, the energy contour line forms a closed loop in
the ξ -θ plane, and the population difference ξ can change its
sign, while for ST, the energy contour line is an open line for
which the sign of ξ remains unchanged. The corresponding
trajectories of the pendulum in the x-y plane are shown in
Figs. 3(b) and 3(c). In the absence of the nonlinear tunneling,

the energy of the pendulum Hc is an even function of both the
angular momentum ξ and the tilt angle θ , as can be seen from
Fig. 3(a). Under our choice of T + > 0, the effective pendulum
length is negative (d < 0). In the energy contour plot, the
centers of the JO modes are located at ξ = 0 and θ = ±π .

With the addition of a nonlinear tunneling strength, the
symmetry of the energy Hc about ξ is broken. Figures 4(a)
and 4(b) show the the energy contour lines for a weak nonlinear
tunneling strength with T + � −T − > 0. When ξ > 0, the
magnitude of the effective length d will be reduced rapidly as
the angular momentum ξ grows. This causes the energy of the
pendulum to have a weak dependence upon the angle θ . On the
contrary, when ξ < 0, the magnitude of the angular momentum
ξ grows rapidly as the length d is reduced. Therefore the energy
contour lines of the JO and the ST become flat (steep) when
ξ > 0 (ξ < 0). In Figs. 4(a) and 4(b), the orthocenter of the
closed loops has been moved down from ξ = 0.

B. Strong nonlinear case

We now turn to the strong nonlinear case with |T −| > T +.
As the nonlinear tunneling strength increases in magnitude,
the asymmetry in energy contour about ξ = 0 becomes more
and more dramatic [see Figs. 4(c) and 4(d)]. There exist closed
loops in which the sign of the angular momentum ξ remains
positive [the purple contour in Fig. 4(d)]. Such a mode exhibits
the characteristics of both JO (closed-loop energy contour) and
ST (sign of ξ fixed). From the trajectory of the pendulum bob
which is depicted in Fig. 4(g), one can find that the winding
number of the trajectory around the axis is zero. Therefore, on
the one hand, it is a kind of JO mode based on the definition
by winding number; on the other hand, it also has the feature
of the ST with the sign of ξ fixed. Hence, we name this kind
of mode self-trapping oscillation (STO). On the other side,
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FIG. 4. (Color online) (a)–(d) Energy contour plots of ETC-BHM, Hc

NU
. In all plots, we take V1 = V2 = 5U

4 and fix T + = V1+V2−2U

40 .
(a) T − = −2T +/5, (b) T − = −T +, (c) T − = −12T +/5, (d)–(h) T − = −5T +. Figures (f), (g), and (h) depict the trajectories of the effective
pendulum length for the white, purple, and thick black contour line of energy in (d). x and y are in units of U .
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some trapping modes with open energy contour lines inherit
characteristics of the JO mode, where the sign of ξ varies
with θ [see the white contour in Fig. 4(d)]. The corresponding
winding number of the trajectory around the axis is ±1 [see
Fig. 4(f)]. We name this kind of mode the oscillating-type
trapping (OTT) mode. The existence of STO and OTT is a
distinct feature of the strong nonlinear tunneling effect.

For the strong nonlinear case, there emerges an energy
contour line which is just a horizontal line, as can be seen in
Figs. 4(c) and 4(d). This line corresponds to ξ = −T +/T −,
with the corresponding θ -independent energy E = Hc(ξ =
−T +/T −,θ ) = c(T +/T −)2. However, for this same energy,
one can find another energy contour line determined by
Hc(ξ,θ ) = E or c(ξ − T +

T − ) + 2NT −√
1 − ξ 2 cos θ = 0. This

is represented by the wavy thick black line in Figs. 4(c)
and 4(d). As |T +/T −| decreases, these two contour lines
eventually intersect with each other. This is illustrated in
Fig. 4(d), and in Fig. 4(e) we isolated out these two lines.
The intersections of these two lines represent the saddle points
of the system, and these two intersecting lines thus become
the separatrix of the system [18]. The direction of the motion
along the separatrix is marked by red arrows in Fig. 4(e).
The trajectory of the pendulum length when the system is
prepared on the separatrix is depicted in Fig. 4(h). It looks like
a combination of the STO and the OTT trajectories plotted
in Figs. 4(f) and 4(g). In real situations, however, the system
can come very close to, but never touch, the separatrix. In the
region enclosed by the two separatrix, the STO mode arises
naturally.

V. THE GROUND-STATE PROPERTIES

We now turn to the study of the ground state. In particular,
we show that, under proper conditions, there is a first-order
phase transition when the nonlinear tunneling rate T − is tuned.
Here we focus on the strong interaction case with V1,2, U 

|T ±|. We fix all the parameters except for T −. The mean-field
ground state, which minimizes Hc in Eq. (8), must occur at
θ = 0 or π . We define E0,π = min{Hc(ξ,θ = 0, π )}/N and
plot them in Fig. 5 as functions of T −. As one can see from
Figs. 5(a) and 5(b), for V1 � V2, Eπ remains smaller than E0.
However, as shown in Figs. 5(c) and 5(d), when V1 < V2, a
level crossing occurs at a critical value of T −, across which the
ground state changes from θ = 0 to θ = π . Hence this critical
point represents a first-order phase transition. We also plot the
effective pendulum length d of the ground state in Fig. 5(d).
We can see that d changes its sign at the critical point.

This mean-field phase transition can thus be understood as
follows. In the strong interaction situation, the ground-state
population difference ξ is mainly determined by the first line
of Eq. (8), which yields

ξg ≈ − V1 − V2

V1 + V2 − 2U
.

Under our assumption that T + and T − have opposite signs, the
coefficient before the cos θ term in Eq. (8) would change sign
when the relative strengths of T + and T − are varied as long
as ξg > 0, which occurs when V1 < V2 under our choice of
parameters. This leads to the phase transition between θ = 0
and π in the ground state. As shown in Fig. 5(d), the effective

pendulum length d is positive when |T −| is larger than the
critical value; in this regime, the ground state can be written
as 
0 = eiψ (

√
N1,

√
N2)T . On the other side of the critical

point, d becomes negative and the ground state reads 
π =
eiψ (

√
N1,

√
N2e

iπ )T . Hence this first-order phase transition is
a result from the fact that in our model, d is able to change sign
as parameters are tuned. Such a transition would not occur in
the DW-BHM when the strength of the tunneling is varied as
it would not affect the sign of the cos θ term, and the ground
state only takes the form of 
0 as the effective pendulum length
dDW remains positive.

To show that this first-order phase transition is not merely
a mean-field artifact, we performed full quantum calculations
to find the ground state of Heff in Eq. (2) via exact diago-
nalization. In Fig. 6 we show the ground-state energy Eg and
the von Neumann entropy S for the reduced single-particle
density matrix as functions of T −. To do so, we expand Heff

onto the basis |i,N − i〉, which corresponds to the Fock state
with i (N − i) particle in the first (second) polariton mode.
The ground state has the form

|�g〉 =
N∑

i=0

ci |i,N − i〉,

from which we can define the von Neumann entropy as

S = −
∑

i

|ci |2 ln |ci |2 .

From Fig. 6, one can see that at the critical value of T − where
the mean-field phase transition occurs, Eg shows a kink and
S exhibits a discrete jump. The discontinuous von Neumann
entropy at the critical point is another distinct characteristic
of the first-order quantum phase transition [19–21]. Hence the
quantum calculation confirms the existence of the first-order
phase transition.

FIG. 5. (Color online) Energies E0 and Eπ (in units of U ) as
functions of T −. The parameters we have used are T + = 0.03,
U = 1, V1 = 1.5, and (a) V2 = 1.2, (b) V2 = 1.5, (c) V2 = 1.7, and
(d) V2 = 2. In (d), we also plot the effective pendulum length d for
the ground state.
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VI. DETECTION

Here we propose an experimental scheme to extract the
information on the state of the polaritons. We first map the
excitations of the polaritons to the collective atomic excitations
(P †

1
.= S

†
12 and P

†
2

.= S
†
13) by adiabatically adjusting external

laser fields and making the parameter � much smaller than g,
meanwhile, turning the microwave fields off. In this situation,
the effective interactions between the inner energy levels 2
and 3 are frozen. Thus we may obtain the information on the
quantum state by probing the population of the atomic energy
levels. However, it should be noted that, so far, it is not clear
regarding the relationship between the quantum-mechanical
eigenstates and mean-field kinetic modes. Here, we
consider the bosonic condensate quantum-mechanical
state |
〉 = 1/

√
n!(cos ζS

†
12 + eiη sin ζS

†
13)n|vac〉, where

|vac〉 = ⊗n
i=1|1i〉. The strength of the resonance

fluorescence in atomic level 2 is proportional to
〈N1〉 = ∑n

i=0(n − i)Ci
n(cos ζ )2(n−i)(sin ζ )2i . To detect

the relative phase η, we may take advantage of the
interference technique, which can be realized by using
the Hamiltonian HR = �(S13S

†
12 + S12S

†
13). In principle,

HR can be implemented by the optical Raman process.
Thus, when the state of the system undergoes the
unitary transformation U (t) = exp (−iHRt), we may
obtain the interference curve dependent on the evolution
time by probing the population at the atomic energy
level 2. The strength of the resonance fluorescence
in atomic level 2 is proportional to 〈N1(t)〉 = ∑n

i=0(n −
i)Ci

n[cos2(ζ−�t)−1/2 sin 2ζ sin 2�t(1− sin η)]n−i[sin2(ζ −
�t) + 1/2 sin 2ζ sin 2�t(1 − sin η)]i . Once the parameters
ζ and �t are fixed, we may deduce the information on the
phase η.

VII. CONCLUSION

In summary, we have made an experimental proposal to
realize an extended two-component Bose-Hubbard model in
the form of a two-mode polariton condensate inside an optical
microcavity. In contrast to the conventional two-component
Bose-Hubbard model (such as realized with condensate

FIG. 6. (Color online) The ground-state energy Eg (blue dashed
lines), in units of U , and the von Neumann entropy S (red solid lines)
as functions of T −. Here the total number of particles is N = 1000.
The parameters are the same as in Fig. 5.

confined in double-well potential), ours features a nonlinear
tunneling term that depends on the number difference between
the two modes. We have shown in this work that the nonlinear
tunneling term leads to new dynamical modes and induces a
first-order phase transition in the ground state of the system.
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APPENDIX: DERIVATION OF THE TWO-MODE
HAMILTONIAN

Without loss of generality, here we set ω1 as zero point
of the energy and define the collective atomic operators as
follows:

S1i = 1√
Na

Na∑
j=1

|1〉jj 〈i|, (A1)

where i = 2,3,...,7. S
†
1i refers to the conjugate operator of

S1i . Under the low excitation limit (LEL) that the number
of the excited atoms is far less than the total number of
the atoms in the ensemble, collective atomic operators
approximatively satisfy the relation S

†
1iS1k = ∑Na

j=1 |i〉jj 〈k|,
which further leads to the bosonic commutation relation:
[S1i , S

†
1j ] = δij , [S1i , S1j ] = 0, and [S†

1i , S
†
1j ] = 0. We divide

the total Hamiltonian into two parts: H = H0 + HI , H0 =
(ωc − ωL1)

∑Na

j=1 |2〉jj 〈2| + (ωc − ωL2)
∑Na

j=1 |3〉jj 〈3| +
ωc

∑Na

j=1 |4〉jj 〈4| + ω5
∑Na

j=1 |5〉jj 〈5| + ω6
∑Na

j=1 |6〉jj 〈6| +
(ω7 − �)

∑Na

j=1 |7〉jj 〈7| + ωc(a†a + 1
2 ), where � is the

detuning of the microwave field. Thus, in the rotating frame
of H0, H rot

I = eiH0tHI e
−iH0t has the following form:

H rot
I = H rot

I1 + H rot
I2 ,

H rot
I1 = εS

†
12S12 − εS

†
13S13 + δS

†
14S14 + �S

†
17S17

+
(

�24

2
S
†
12S14 + �34

2
S
†
13S14 +

√
Ng14S14a

† + H.c.

)

+
(

�ν1

2
S
†
15S17 + �ν2

2
S
†
16S17 + H.c.

)
,

H rot
I2 = g25e

−i(�5+ε)t S
†
12S15a

† + g36e
−i(�6−ε)t S

†
13S16a

† + H.c.

(A2)

Here, ε = ω2 − (ωc − ωL1) = (ωc − ωL2) − ω3, δ = ω4 −
ωc, �5 = ω5 − ω2 − ωc, and �6 = ω6 − ω3 − ωc. Under
LEL, H rot

I1 can be seen as the bosonic quadric form in
which seven bosonic modes can be divided into two inde-
pendent subclasses: C1 = {S12,S

†
12,S13,S

†
13,S14,S

†
14,a,a†} and

C2 = {S15,S
†
15,S16,S

†
16,S17,S

†
17}. Thus H rot

I1 can be unitarily
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diagonalized as

H rot
I1 =

4∑
i=1

λiP
†
i Pi +

∑
α=0,+,−

γαQ†
αQα. (A3)

Here, P
†
i ,Pi (Q†

α,Qα) are bosonic creation and annihila-
tion operators generated from the subclass C1 (C2). P

†
i

is defined as the polariton mode, which is the superpo-
sition of the cavity mode and the collective atomic ex-
citation mode. For simplicity, here we set �24 = �34 =√

2� 
 ε, g = √
Nag14, and � = 0 to fix the eigen-

values in H rot
I1 : λ1,2 = ±( εg√

�2+g2
+ ε3�2

2g(�2+g2)3/2 ) + ε2δ�2

2(�2+g2)2 ,

λ3,4 = δ±
√

δ2+4(�2+g2)
2 ± ε2�2[δ2+2(�2+g2)∓δ

√
δ2+4(�2+g2)]

2
√

δ2+4(�2+g2)(�2+g2)2
, γ0 =

0, γ± = ±
√

�2
ν1+�2

ν2

2 . The condition �,δ 
 ε leads to

|λ1|,|λ2| � |λ3|,|λ4|. Therefore we name the modes P
†
1

and P
†
2 the quasi-dark-state polaritons, which can be ap-

proximately written as: P †
1(2)

.= 1
2 ( g

ω
± 1)S†

12 + 1
2 ( g

ω
∓ 1)S†

13 −
�√
2ω

a†, where ω =
√

g2 + �2.

H rot
I2 induces the interactions between the bosonic modes

in C1 and C2. When large detuning conditions g25 � �5 +
ε and g36 � �6 − ε hold, the direct couplings between the
modes in different subclasses are forbidden. However, under
appropriate conditions, one can make the second-order effect

of H rot
I2 lead to the nonlinear interactions between the interior

modes in the subclass C1 (C2). Here, we neglect the tedious
steps and directly present the approximate conditions to realize
the aforementioned idea:

|gm| � ( | �n ± ε|,|γ±|,|λ1|,|λ2|,|λ1 − λ2|,|γ± ± (λ2 − λ1)|,
| γ± ± 2(λ2 − λ1)|) � |λ3|,|λ4|,|λ3 + λ4|, (A4)

where m = 25,36 and n = 5,6. The above first inequality
makes the couplings between the bosonic modes in C1 and
C2 negligible. The second one causes the polariton modes 3
and 4 to decouple with the other modes under the second-order
perturbation approximation. Furthermore, assume that vacuum
occupation holds for modes Q†

α(α = 0, + ,−). Under the
special resonant condition [see Fig. 2(b)], we can obtain the
effective Hamiltonian just by including the polariton modes 1
and 2 by the method in [22]:

Heff ≈ V1

2
P

†2
1 P 2

1 + V2

2
P

†2
2 P 2

2 + UP
†
1 P1P

†
2 P2

+ T +[P †
1 (P †

1 P1 + P
†
2 P2)P2 + P

†
2 (P †

1 P1 + P
†
2 P2)P1]

+ T −[P †
1 (P †

1 P1 − P
†
2 P2)P2 + P

†
2 (P †

1 P1 − P
†
2 P2)P1],

(A5)

which is the effective two-mode Hamiltonian (2) given that
N = 〈P †

1 P1 + P
†
2 P2〉. Here the coefficients are given by

V1 = − �2

4ω2

[
g2

25

( g

ω
+ 1

)2
(

�2
ν2

/
ω2

ν

δ′ + 2λ2 − 2λ1
+ �2

ν1

/(
2ω2

ν

)
δ′ + 2λ2 − 2λ1 + γ+

+ �2
ν1

/(
2ω2

ν

)
δ′ + 2λ2 − 2λ1 + γ−

)

+ g2
36

( g

ω
− 1

)2
(

�2
ν1

/
ω2

ν

δ′ + λ2 − λ1
+ �2

ν2

/(
2ω2

ν

)
δ′ + λ2 − λ1 + γ+

+ �2
ν2

/(
2ω2

ν

)
δ′ + λ2 − λ1 + γ−

)]
,

V2 = − �2

4ω2

[
g2

25

( g

ω
− 1

)2
(

�2
ν2/ω

2
ν

δ′ + �2
ν1

/(
2ω2

ν

)
δ′ + γ+

+ �2
ν1

/(
2ω2

ν

)
δ′ + γ−

)

+ g2
36

( g

ω
+ 1

)2
(

�2
ν1

/
ω2

ν

δ′ + λ1 − λ2
+ �2

ν2

/(
2ω2

ν

)
δ′ + λ1 − λ2 + γ+

+ �2
ν2

/(
2ω2

ν

)
δ′ + λ1 − λ2 + γ−

)]
,

U = −g2�2

2ω4

[
g2

25

(
�2

ν2

/
ω2

ν

δ′ + λ2 − λ1
+ �2

ν1

/(
2ω2

ν

)
δ′ + λ2 − λ1 + γ+

+ �2
ν1

/(
2ω2

ν

)
δ′ + λ2 − λ1 + γ−

)

+ g2
36

(
�2

ν1

/
ω2

ν

δ′ + �2
ν2

/(
2ω2

ν

)
δ′ + γ+

+ �2
ν2

/(
2ω2

ν

)
δ′ + γ−

)]
,

T ± = −gg25g36�
2�ν1�ν2

8ω3ω2
ν

( g

ω
− 1

) [(
1/2

δ′ + λ2 − λ1 + γ+
+ 1/2

δ′ + λ2 − λ1 + γ−
− 1

δ′ + λ2 − λ1

)

±
(

1/2

δ′ + γ+
+ 1/2

δ′ + γ−
− 1

δ′

)]
,

where ων =
√
�2

ν1 + �2
ν2. All these coefficients are highly

tunable.
To clarify the physical origin of the terms in Hamilto-

nian (A5), we present a picture based on the fourth-order
transition process between polariton modes 1 and 2 as

schematically shown in Fig. 7. When the microwave fields
�ν1 and �ν2 are absent, the fourth-order resonance terms
only include the Kerr nonlinear terms P

†2
i P 2

i (i = 1,2) and
P

†
1 P1P

†
2 P2, as shown in Fig. 7(a). Here the blue (green) arrows

refer to P1 and P
†
1 (P2 and P

†
2 ). With the microwave fields �ν1
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(a) (b)

FIG. 7. (Color online) Schematic on fourth-order transition pro-
cess of polariton modes 1 and 2. (a) When the microwave fields
�ν1,�ν2 = 0, the fourth-order resonance processes just induce Kerr
nonlinearity. Here, the blue (green) arrows refer to P1 and P

†
1 (P2

and P
†
2 ). (b) Three intermediate polariton modes are generated by the

resonance process induced by the microwave fields (�ν1,�ν2). On
the condition of �6 − ε − (λ1 + λ2) = �5 + ε − 2λ2 = δ′, besides
the Kerr nonlinear items, P

†
1 P

†
1 P1P2, P

†
2 P

†
2 P2P1 and their conjugate

items are induced.

and �ν2 present, three more polariton modes Q†
α(α = 0, + ,−)

with eigenfrequency γα(α = 0, + ,−) are generated. When the
resonant condition �6 − ε − (λ1 + λ2) = �5 + ε − 2λ2 = δ′
holds, adiabatically eliminating polariton modes Q†

α leads
to terms like P

†
1 P

†
1 P1P2, P

†
2 P

†
2 P2P1 and their Hermitian

conjugates. To illustrate this process, here we just single

FIG. 8. (Color online) The fidelity F = |〈φ(t)|φ(0)〉| vs time. We
set the Fock states |0,1〉 and |0,2〉 as the initial states, where |N1,N2〉
represents that there are N1 polaritons in mode 1 and N2 polaritons in
mode 2, and evolve the system under Hamiltonian (A2) (solid lines)
or (A5) (dashed lines).

out the intermediate polariton mode Q
†
0 to illustrate the

fourth-order resonance transitions [see Fig. 7(b)]. It should
be noted that, in this process, the Kerr nonlinear terms are still
present. Together with the other similar transition processes,
the effective Hamiltonian (A5) is generated.

To check the validity for approximations invoked in deriv-
ing the effective Hamiltonian (A5), we numerically simulate
the time evolution in the case of one or two polaritons. As
Fig. 8 shows, the results obtained using Hamiltonian (A2)
agree perfectly with those obtained using (A5).
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