Physics and Astronomy Publications
Permanent URI for this collection
Browse
Recent Submissions
Now showing 1 - 20 of 2053
Item Trapped-ion quantum simulation of electron transfer models with tunable dissipation(AAAS, 2024) So, Visal; Duraisamy Suganthi, Midhuna; Menon, Abhishek; Zhu, Mingjian; Zhuravel, Roman; Pu, Han; Wolynes, Peter G.; Onuchic, José N.; Pagano, Guido; Center for Theoretical Biological PhysicsElectron transfer is at the heart of many fundamental physical, chemical, and biochemical processes essential for life. The exact simulation of these reactions is often hindered by the large number of degrees of freedom and by the essential role of quantum effects. Here, we experimentally simulate a paradigmatic model of molecular electron transfer using a multispecies trapped-ion crystal, where the donor-acceptor gap, the electronic and vibronic couplings, and the bath relaxation dynamics can all be controlled independently. By manipulating both the ground-state and optical qubits, we observe the real-time dynamics of the spin excitation, measuring the transfer rate in several regimes of adiabaticity and relaxation dynamics. Our results provide a testing ground for increasingly rich models of molecular excitation transfer processes that are relevant for molecular electronics and light-harvesting systems.Item Impact of Surface Enhanced Raman Spectroscopy in Catalysis(American Chemical Society, 2024) Stefancu, Andrei; Aizpurua, Javier; Alessandri, Ivano; Bald, Ilko; Baumberg, Jeremy J.; Besteiro, Lucas V.; Christopher, Phillip; Correa-Duarte, Miguel; de Nijs, Bart; Demetriadou, Angela; Frontiera, Renee R.; Fukushima, Tomohiro; Halas, Naomi J.; Jain, Prashant K.; Kim, Zee Hwan; Kurouski, Dmitry; Lange, Holger; Li, Jian-Feng; Liz-Marzán, Luis M.; Lucas, Ivan T.; Meixner, Alfred J.; Murakoshi, Kei; Nordlander, Peter; Peveler, William J.; Quesada-Cabrera, Raul; Ringe, Emilie; Schatz, George C.; Schlücker, Sebastian; Schultz, Zachary D.; Tan, Emily Xi; Tian, Zhong-Qun; Wang, Lingzhi; Weckhuysen, Bert M.; Xie, Wei; Ling, Xing Yi; Zhang, Jinlong; Zhao, Zhigang; Zhou, Ru-Yu; Cortés, EmilianoCatalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.Item Imaging shapes of atomic nuclei in high-energy nuclear collisions(Springer Nature, 2024) STAR CollaborationAtomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometre-scale space. These complex systems manifest a variety of shapes1–3, traditionally explored using non-invasive spectroscopic techniques at low energies4,5. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the collective-flow-assisted nuclear shape-imaging method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analysing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors6,7. We benchmark this method in collisions of ground-state uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.Item Determining the N-Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling(American Chemical Society, 2024) Massaccesi, Gustavo E.; Oña, Ofelia B.; Capuzzi, Pablo; Melo, Juan I.; Lain, Luis; Torre, Alicia; Peralta, Juan E.; Alcoba, Diego R.; Scuseria, Gustavo E.The N-representability problem consists in determining whether, for a given p-body matrix, there exists at least one N-body density matrix from which the p-body matrix can be obtained by contraction, that is, if the given matrix is a p-body reduced density matrix (p-RDM). The knowledge of all necessary and sufficient conditions for a p-body matrix to be N-representable allows the constrained minimization of a many-body Hamiltonian expectation value with respect to the p-body density matrix and, thus, the determination of its exact ground state. However, the number of constraints that complete the N-representability conditions grows exponentially with system size, and hence, the procedure quickly becomes intractable for practical applications. This work introduces a hybrid quantum-stochastic algorithm to effectively replace the N-representability conditions. The algorithm consists of applying to an initial N-body density matrix a sequence of unitary evolution operators constructed from a stochastic process that successively approaches the reduced state of the density matrix on a p-body subsystem, represented by a p-RDM, to a target p-body matrix, potentially a p-RDM. The generators of the evolution operators follow the well-known adaptive derivative-assembled pseudo-Trotter method (ADAPT), while the stochastic component is implemented by using a simulated annealing process. The resulting algorithm is independent of any underlying Hamiltonian, and it can be used to decide whether a given p-body matrix is N-representable, establishing a criterion to determine its quality and correcting it. We apply the proposed hybrid ADAPT algorithm to alleged reduced density matrices from a quantum chemistry electronic Hamiltonian, from the reduced Bardeen–Cooper–Schrieffer model with constant pairing, and from the Heisenberg XXZ spin model. In all cases, the proposed method behaves as expected for 1-RDMs and 2-RDMs, evolving the initial matrices toward different targets.Item Estimating quasi-linear diffusion coefficients for varying values of density ratio(Frontiers Media S.A., 2024) Albert, Jay M.; Longley, William J.; Chan, Anthony A.This paper considers a method for estimating bounce-averaged quasi-linear diffusion coefficients due to whistler-mode waves for a specified ratio of plasma frequency to gyrofrequency, ωp/Ωe, using values precomputed for a different value of that ratio. This approach was recently introduced to facilitate calculations associated with the “POES technique,” generalized to infer both wave intensity and cold plasma density from measurements of particle fluxes near the loss cone. The original derivation was justified on the basis of parallel-propagating waves but applied to calculations with much more general models of the waves. Here, we justify the estimates, which are based on equating resonant frequencies for differing values of ωp/Ωe and energy, for wide ranges of wave normal angle, resonance number, energy, and equatorial pitch angle. Refinements of the original estimates are obtained and tested numerically against full calculations of the diffusion coefficients for representative wave models. The estimated diffusion coefficients can be calculated rapidly and generally give useful estimates for energies in the 30-keV–300-keV range, especially when both relevant values of the ratio ωp/Ωe are large.Item High-Energy Neutrino Flavor State Transition Probabilities(MDPI, 2024) Harrison, John; Anantua, RichardWe analytically determine neutrino transitional probabilities and abundance ratios at various distances from the source of creation in several astrophysical contexts, including the Sun, supernovae and cosmic rays. In doing so, we determine the probability of a higher-order transition state from ντ→νλ, where νλ represents a more massive generation than Standard Model neutrinos. We first calculate an approximate cross-section for high-energy neutrinos which allows us to formulate comparisons for the oscillation distances of solar, supernova and higher-energy cosmic ray neutrinos. The flavor distributions of the resulting neutrino populations from each source detected on Earth are then compared via fractional density charts.Item Simulation of Thermal Nonequilibrium Cycles in the Solar Wind(IOP Publishing, 2024) Scott, Roger B.; Reep, Jeffrey W.; Linton, Mark G.; Bradshaw, Stephen J.Thermal nonequilibrium (TNE) is a condition of the plasma in the solar corona in which the local rate of energy loss due to radiation increases to the point that it cannot be sustained by the various heating terms acting on the plasma, precluding the existence of a steady state. The limit cycles of precipitation and evaporation that result from TNE have been simulated in 1D models of coronal loops, as well as 2D and 3D models of the solar chromosphere and lower corona. However, a careful study of TNE in the solar wind has not been performed until now. Here, we demonstrate that for suitable combinations of local and global heating rates, it is possible for the plasma to exhibit a TNE condition, even in the context of a transonic solar wind with appreciable mass and energy fluxes. This implies limits on the amount of footpoint heating that can be withstood under steady-state conditions in the solar wind, and may help to explain the variability of solar wind streams that emanate from regions of highly concentrated magnetic flux on the solar surface. The implications of this finding pertain to various sources of high-density solar wind, including plumes that form above regions of mixed magnetic polarity in polar coronal holes and the slow solar wind that emanates from coronal hole boundaries.Item Strange-metal behavior without fine tuning in PrV2Al20(American Physical Society, 2024) Lenk, Marvin; Gao, Fei; Kroha, Johann; Nevidomskyy, Andriy H.Strange-metal behavior observed in the praseodymium-based heavy-fermion material PrV2Al20 has been tentatively interpreted in the framework of proximity to a quantum critical point (QCP) associated with quadrupolar ordering. Here, we demonstrate that an alternative, natural explanation exists without invoking a QCP, in terms of the unconventional nature of the quadrupolar Kondo effect taking place in non-Kramers ions. Using a combination of ab initio density-functional theory calculations and analytical arguments, we construct a periodic Anderson model with realistic parameters to describe PrV2Al20. We solve the model using dynamical mean-field theory preserving the model symmetries and demonstrate the non-Fermi liquid strange-metal behavior stemming from the two-channel nature of the quadrupolar Kondo effect. Our calculations provide an explanation for the puzzling temperature dependence in the magnetic susceptibility and provide a basis for analyzing future photoemission experiments.Item Resonant conversion of axion dark radiation into terahertz electromagnetic radiation in a neutron star magnetosphere(American Physical Society, 2024) Long, Andrew J.; Schiappacasse, Enrico D.In the strong magnetic field of a neutron star’s magnetosphere, axions coupled to electromagnetism develop a nonzero probability to convert into photons. Past studies have revealed that the axion-photon conversion can be resonantly enhanced. We recognize that the axion-photon resonance admits two parametrically distinct resonant solutions, which we call the mass-matched resonance and the Euler-Heisenberg assisted resonance. The mass-matched resonance occurs at a point in the magnetosphere where the radially-varying plasma frequency crosses the axion mass 𝜔pl ≈𝑚𝑎. The Euler-Heisenberg assisted resonance occurs where the axion energy satisfies 𝜔 ≈(2𝜔2pl/7𝑔𝛾𝛾𝛾𝛾¯𝐵2)1/2. This second resonance is made possible though the strong background magnetic field ¯𝐵, as well as the nonzero Euler-Heisenberg four-photon self-interaction, which has the coupling 𝑔𝛾𝛾𝛾𝛾 =8𝛼2/45𝑚4𝑒. We study the resonant conversion of relativistic axion dark radiation into photons via the Euler-Heisenberg assisted resonance, and we calculate the expected electromagnetic radiation assuming different values for the axion-photon coupling 𝑔𝑎𝛾𝛾 and different amplitudes for the axion flux onto the neutron star Φ𝑎. We briefly discuss several possible sources of axion dark radiation. Achieving a sufficiently strong axion flux to induce a detectable electromagnetic signal seems unlikely.Item Embedded Young Stellar Objects near H72.97-69.39: A Forming Super Star Cluster in N79(IOP Publishing, 2024) Nayak, Omnarayani; Nally, Conor; Hirschauer, Alec S.; Jones, Olivia C.; Jaspers, Jeroen; Lenkić, Laura; Meixner, Margaret; Habel, Nolan; Reiter, Megan; Chu, Laurie; Kavanagh, Patrick J.; Robberto, Massimo; Sargent, B. A.We present 102 embedded young stellar object (YSO) candidates associated with the H72.97-69.39 super star cluster (SSC) in the Large Magellanic Cloud (LMC). With the use of the James Webb Space Telescope Mid-Infrared Instrument (MIRI) imaging mode, we utilize an F770W – F1000W versus F1000W color–magnitude diagram to select 70 YSO candidates. An additional 27 YSO candidates are selected based on model fitting using the four MIRI imaging filters employed for this study (F770W, F1000W, F1500W, and F2100W). The central region of H72.97-69.39 is saturated in MIRI imaging, however it is covered by observations made with the Medium Resolution Spectrometer (MRS), leading to the identification of five additional massive YSOs. The total star formation rate inferred based on the 102 YSO candidates is 0.02 M ⊙ yr−1, similar to other high-mass star-forming regions in the LMC which have undergone several generations of starburst events. Due to its young age, however, H72.97-69.39's stellar production rate is expected to increase. The central five YSOs identified with MRS have masses ranging from 21.1 to 40.3 M ⊙ and total luminosity over 106 L ⊙, making H72.97-69.39 a very compact and luminous star-forming region similar to other known SSCs. We theorize that the central five massive YSOs were formed via filamentary collision, while other YSO candidates of varying masses were triggered by wind, radiation, and expanding H ii shells based on their spatial distribution.Item Thermal pressure on ultrarelativistic bubbles from a semiclassical formalism(IOP Publishing, 2024) Long, Andrew J.; Turner, JessicaWe study a planar bubble wall that is traveling at an ultrarelativistic speed through a thermal plasma. This situation may arise during a first-order electroweak phase transition in the early universe. As particles cross the wall, it is assumed that their mass grows from m a to m b , and they are decelerated causing them to emit massless radiation (m c = 0). We are interested in the momentum transfer to the wall, the thermal pressure felt by the wall, and the resultant terminal velocity of the wall. We employ the semiclassical current radiation (SCR) formalism to perform these calculations. An incident-charged particle is treated as a point-like classical electromagnetic current, and the spectrum of quantum electromagnetic radiation (photons) is derived by calculating appropriate matrix elements. To understand how the spectrum depends on the thickness of the wall, we explore simplified models for the current corresponding to an abrupt and a gradual deceleration. For the model of abrupt deceleration, we find that the SCR formalism can reproduce the P therm ∝ γ 0 w scaling found in earlier work by assuming that the emission is soft, but if the emission is not soft the SCR formalism can be used to obtain P therm ∝ γ 2 w instead. For the model of gradual deceleration, we find that the wall thickness L w enters to cutoff the otherwise log-flat radiation spectrum above a momentum of ∼ γ 2 w / L w , and we discuss the connections with classical electromagnetic bremsstrahlung.Item Implementation of an Asymmetric Internal Field in the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) Model(Wiley, 2024) Fok, M.-C.; Wolf, R. A.; Ferradas, C. P.; Kang, S.-B.; Glocer, A.; Buzulukova, N. Y.; Ma, Q.; Welling, D. T.A Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model has been developed to study the dynamics of the cold plasmasphere and the energetic plasmas in the inner magnetosphere, as well as their couplings with each other and with the ionosphere. The CIMI model is able to predict the cold plasma density and energetic electron and ion fluxes in geospace. Furthermore, CIMI is capable of predicting the Region 2 currents, penetration electric field, electron and ion precipitation and magnetospheric heat flux into the ionosphere. The CIMI model includes a realistic magnetic field configuration with a combination of an internal field and an external field imposed by the interaction of the solar wind with the magnetosphere. The internal field has previously been assumed to be a dipole. Recently, the International Geomagnetic Reference Field (IGRF) has been implemented. This new capability enables studies of north-south and longitudinal dependences in particle precipitation and heat flux, as well as the corresponding asymmetries in ionospheric and thermospheric responses. In this paper, we will briefly review the CIMI equations and model output. Then we will describe the new implementation of the IGRF model into CIMI and how to estimate the north-south asymmetry in precipitating fluxes from the differences in field strength between magnetic conjugate points. The inclusion of a realistic internal field leads CIMI into a better position to couple with sophisticated ionosphere-thermosphere models, most of which are using the IGRF model.Item Buoyancy Modes in a Low Entropy Bubble(Wiley, 2024) Toffoletto, F. R.; Wolf, R. A.; Derr, J.In the nightside region of Earth's magnetosphere, braking oscillations or buoyancy modes have been associated with the occurrence of low entropy bubbles. These bubbles form in the plasma sheet, particularly during geomagnetically disturbed times, and because of interchange, move rapidly earthward and may eventually come to rest in the inner plasma sheet or inner magnetosphere. Upon arrival, they often exhibit damped oscillations with periods of a few minutes and are associated with Pi2 pulsations. Previously we used the thin filament approximation to compare the frequencies and modes of buoyancy waves using magnetohydrodynamic (MHD) ballooning and classic interchange theory. Interchange oscillations differ from the more general MHD oscillations by assuming constant pressure along a magnetic field line. It was determined that MHD ballooning and interchange modes are similar for plasma sheet field lines but differ for field lines that map to the inner magnetosphere. This suggested that the classic interchange formulation was only valid in the plasma sheet. This paper tests the hypothesis that the agreement between MHD ballooning and classic interchange could be restored inside a bubble. We create a small region of entropy depletion in the magnetotail and compare the buoyancy mode properties. At some locations inside the bubble, the MHD ballooning buoyancy modes resemble interchange modes but with lower frequencies than those of the unperturbed background. Unstable modes are found on the earthward edge of the bubble, while at the tailward edge, MHD ballooning predicts a slow mode wave solution not seen in the pure interchange solution.Item Wave steepening and shock formation in ultracold neutral plasmas(AIP Publishing, 2024) Warrens, M. K.; Inman, N. P.; Gorman, G. M.; Husick, B. T.; Bradshaw, S. J.; Killian, T. C.We present observations of wave steepening and signatures of shock formation during expansion of ultracold neutral plasmas formed with an initial density distribution that is centrally peaked and decays exponentially with distance. The plasma acceleration and velocity decrease at large distance from the plasma center, leading to central ions overtaking ions in the outer regions and the development of a steepening front that is narrow compared to the size of the plasma. The density and velocity change dramatically across the front, and significant heating of the ions is observed in the region of steepest gradients. For a reasonable estimate of electron temperature, the relative velocity of ions on either side of the front modestly exceeds the local sound speed (Mach number M≳1). This indicates that by sculpting steep density gradients, it is possible to create the conditions for shock formation, or very close to it, opening a new avenue of research for ultracold neutral plasmas.Item Intermolecular Interactions and their Implications in Solid-State Photon Interconversion(Swiss Chemical Society, 2024) Nienhaus, Lea; Rice Advanced Materials InstitutePhoton interconversion promises to alleviate thermalization losses for high energy photons and facilitates utilization of sub-bandgap photons – effectively enabling the optimal use of the entire solar spectrum. However, for solid-state device applications, the impact of intermolecular interactions on the energetic landscape underlying singlet fission and triplet-triplet annihilation upconversion cannot be neglected. In the following, the implications of molecular arrangement, intermolecular coupling strength and molecular orientation on the respective processes of solid-state singlet fission and triplet-triplet annihilation are discussed.Item Persistent flat band splitting and strong selective band renormalization in a kagome magnet thin film(Springer Nature, 2024) Ren, Zheng; Huang, Jianwei; Tan, Hengxin; Biswas, Ananya; Pulkkinen, Aki; Zhang, Yichen; Xie, Yaofeng; Yue, Ziqin; Chen, Lei; Xie, Fang; Allen, Kevin; Wu, Han; Ren, Qirui; Rajapitamahuni, Anil; Kundu, Asish K.; Vescovo, Elio; Kono, Junichiro; Morosan, Emilia; Dai, Pengcheng; Zhu, Jian-Xin; Si, Qimiao; Minár, Ján; Yan, Binghai; Yi, Ming; Smalley-Curl InstituteMagnetic kagome materials provide a fascinating playground for exploring the interplay of magnetism, correlation and topology. Many magnetic kagome systems have been reported including the binary FemXn (X = Sn, Ge; m:n = 3:1, 3:2, 1:1) family and the rare earth RMn6Sn6 (R = rare earth) family, where their kagome flat bands are calculated to be near the Fermi level in the paramagnetic phase. While partially filling a kagome flat band is predicted to give rise to a Stoner-type ferromagnetism, experimental visualization of the magnetic splitting across the ordering temperature has not been reported for any of these systems due to the high ordering temperatures, hence leaving the nature of magnetism in kagome magnets an open question. Here, we probe the electronic structure with angle-resolved photoemission spectroscopy in a kagome magnet thin film FeSn synthesized using molecular beam epitaxy. We identify the exchange-split kagome flat bands, whose splitting persists above the magnetic ordering temperature, indicative of a local moment picture. Such local moments in the presence of the topological flat band are consistent with the compact molecular orbitals predicted in theory. We further observe a large spin-orbital selective band renormalization in the Fe $${{{{\rm{d}}}}}_{{xy}}+{{{{\rm{d}}}}}_{{x}^{2}-{y}^{2}}$$spin majority channel reminiscent of the orbital selective correlation effects in the iron-based superconductors. Our discovery of the coexistence of local moments with topological flat bands in a kagome system echoes similar findings in magic-angle twisted bilayer graphene, and provides a basis for theoretical effort towards modeling correlation effects in magnetic flat band systems.Item Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Projection Chamber(MDPI, 2024) Abed Abud, A.; Abi, B.; Acciarri, R.; Acero, M. A.; Adames, M. R.; Adamov, G.; Adamowski, M.; Adams, D.; Adinolfi, M.; Adriano, C.; Aduszkiewicz, A.; Aguilar, J.; Aimard, B.; Akbar, F.; Allison, K.; Monsalve, S. Alonso; Alrashed, M.; Alton, A.; Alvarez, R.; Alves, T.; Amar, H.; Amedo, P.; Anderson, J.; Andrade, D. A.; Andreopoulos, C.; Andreotti, M.; Andrews, M. P.; Andrianala, F.; Andringa, S.; Anfimov, N.; Ankowski, A.; Antoniassi, M.; Antonova, M.; Antoshkin, A.; Aranda-Fernandez, A.; Arellano, L.; Diaz, E. Arrieta; Arroyave, M. A.; Asaadi, J.; Ashkenazi, A.; Asner, D.; Asquith, L.; Atkin, E.; Auguste, D.; Aurisano, A.; Aushev, V.; Autiero, D.; Azfar, F.; Back, A.; Back, H.; Back, J. J.; Bagaturia, I.; Bagby, L.; Balashov, N.; Balasubramanian, S.; Baldi, P.; Baldini, W.; Baldonedo, J.; Baller, B.; Bambah, B.; Banerjee, R.; Barao, F.; Barenboim, G.; Alzás, P. B̃arham; Barker, G. J.; Barkhouse, W.; Barr, G.; Monarca, J. Barranco; Barros, A.; Barros, N.; Barrow, D.; Barrow, J. L.; Basharina-Freshville, A.; Bashyal, A.; Basque, V.; Batchelor, C.; Bathe-Peters, L.; Battat, J. B. R.; Battisti, F.; Bay, F.; Bazetto, M. C. Q.; Alba, J. L. L. Bazo; Beacom, J. F.; Bechetoille, E.; Behera, B.; Belchior, E.; Bell, G.; Bellantoni, L.; Bellettini, G.; Bellini, V.; Beltramello, O.; Benekos, N.; Montiel, C. Benitez; Benjamin, D.; Neves, F. Bento; Berger, J.; Berkman, S.; Bernal, J.; Bernardini, P.; Bersani, A.; Bertolucci, S.; Betancourt, M.; Rodríguez, A. Betancur; Bevan, A.; Bezawada, Y.; Bezerra, A. T.; Bezerra, T. J.; Bhat, A.; Bhatnagar, V.; Bhatt, J.; Bhattacharjee, M.; Bhattacharya, M.; Bhuller, S.; Bhuyan, B.; Biagi, S.; Bian, J.; Biery, K.; Bilki, B.; Bishai, M.; Bitadze, A.; Blake, A.; Blaszczyk, F. D.; Blazey, G. C.; Blucher, E.; Bogenschuetz, J.; Boissevain, J.; Bolognesi, S.; Bolton, T.; Bomben, L.; Bonesini, M.; Bonilla-Diaz, C.; Bonini, F.; Booth, A.; Boran, F.; Bordoni, S.; Merlo, R. Borges; Borkum, A.; Bostan, N.; Bracinik, J.; Braga, D.; Brahma, B.; Brailsford, D.; Bramati, F.; Branca, A.; Brandt, A.; Bremer, J.; Brew, C.; Brice, S. J.; Brio, V.; Brizzolari, C.; Bromberg, C.; Brooke, J.; Bross, A.; Brunetti, G.; Brunetti, M.; Buchanan, N.; Budd, H.; Buergi, J.; Burgardt, D.; Butchart, S.; V., G. Caceres; Cagnoli, I.; Cai, T.; Calabrese, R.; Calcutt, J.; Calin, M.; Calivers, L.; Calvo, E.; Caminata, A.; Camino, A. F.; Campanelli, W.; Campani, A.; Benitez, A. Campos; Canci, N.; Capó, J.; Caracas, I.; Caratelli, D.; Carber, D.; Carceller, J. M.; Carini, G.; Carlus, B.; Carneiro, M. F.; Carniti, P.; Terrazas, I. Caro; Carranza, H.; Carrara, N.; Carroll, L.; Carroll, T.; Carter, A.; Casarejos, E.; Casazza, D.; Forero, J. F. Castaño; Castaño, F. A.; Castillo, A.; Castromonte, C.; Catano-Mur, E.; Cattadori, C.; Cavalier, F.; Cavanna, F.; Centro, S.; Cerati, G.; Cerna, C.; Cervelli, A.; Villanueva, A. Cervera; Chakraborty, K.; Chakraborty, S.; Chalifour, M.; Chappell, A.; Charitonidis, N.; Chatterjee, A.; Chen, H.; Chen, M.; Chen, W. C.; Chen, Y.; Chen-Wishart, Z.; Cherdack, D.; Chi, C.; Chirco, R.; Chitirasreemadam, N.; Cho, K.; Choate, S.; Chokheli, D.; Chong, P. S.; Chowdhury, B.; Christian, D.; Chukanov, A.; Chung, M.; Church, E.; Cicala, M. F.; Cicerchia, M.; Cicero, V.; Ciolini, R.; Clarke, P.; Cline, G.; Coan, T. E.; Cocco, A. G.; Coelho, J. a. B.; Cohen, A.; Collazo, J.; Collot, J.; Conley, E.; Conrad, J. M.; Convery, M.; Copello, S.; Cova, P.; Cox, C.; Cremaldi, L.; Cremonesi, L.; Crespo-Anadón, J. I.; Crisler, M.; Cristaldo, E.; Crnkovic, J.; Crone, G.; Cross, R.; Cudd, A.; Cuesta, C.; Cui, Y.; Curciarello, F.; Cussans, D.; Dai, J.; Dalager, O.; Dallavalle, R.; Dallaway, W.; da Motta, H.; Dar, Z. A.; Darby, R.; Da Silva Peres, L.; David, Q.; Davies, G. S.; Davini, S.; Dawson, J.; De Aguiar, R.; De Almeida, P.; Debbins, P.; De Bonis, I.; Decowski, M. P.; de Gouvêa, A.; De Holanda, P. C.; De Icaza Astiz, I. L.; De Jong, P.; Del Amo Sanchez, P.; De la Torre, A.; De Lauretis, G.; Delbart, A.; Delepine, D.; Delgado, M.; Dell’Acqua, A.; Monache, G. Delle; Delmonte, N.; De Lurgio, P.; Demario, R.; De Matteis, G.; de Mello Neto, J. R. T.; DeMuth, D. M.; Dennis, S.; Densham, C.; Denton, P.; Deptuch, G. W.; De Roeck, A.; De Romeri, V.; Detje, J. P.; Devine, J.; Dharmapalan, R.; Dias, M.; Diaz, A.; Díaz, J. S.; Díaz, F.; Di Capua, F.; Di Domenico, A.; Di Domizio, S.; Di Falco, S.; Di Giulio, L.; Ding, P.; Di Noto, L.; Diociaiuti, E.; Distefano, C.; Diurba, R.; Diwan, M.; Djurcic, Z.; Doering, D.; Dolan, S.; Dolek, F.; Dolinski, M. J.; Domenici, D.; Domine, L.; Donati, S.; Donon, Y.; Doran, S.; Douglas, D.; Doyle, T. A.; Dragone, A.; Drielsma, F.; Duarte, L.; Duchesneau, D.; Duffy, K.; Dugas, K.; Dunne, P.; Dutta, B.; Duyang, H.; Dwyer, D. A.; Dyshkant, A. S.; Dytman, S.; Eads, M.; Earle, A.; Edayath, S.; Edmunds, D.; Eisch, J.; Englezos, P.; Ereditato, A.; Erjavec, T.; Escobar, C. O.; Evans, J. J.; Ewart, E.; Ezeribe, A. C.; Fahey, K.; Fajt, L.; Falcone, A.; Fani’, M.; Farnese, C.; Farrell, S.; Farzan, Y.; Fedoseev, D.; Felix, J.; Feng, Y.; Fernandez-Martinez, E.; Ferry, G.; Fields, L.; Filip, P.; Filkins, A.; Filthaut, F.; Fine, R.; Fiorillo, G.; Fiorini, M.; Fogarty, S.; Foreman, W.; Fowler, J.; Franc, J.; Francis, K.; Franco, D.; Franklin, J.; Freeman, J.; Fried, J.; Friedland, A.; Fuess, S.; Furic, I. K.; Furman, K.; Furmanski, A. P.; Gaba, R.; Gabrielli, A.; Gago, A. M.; Galizzi, F.; Gallagher, H.; Gallas, A.; Gallice, N.; Galymov, V.; Gamberini, E.; Gamble, T.; Ganacim, F.; Gandhi, R.; Ganguly, S.; Gao, F.; Gao, S.; Garcia-Gamez, D.; García-Peris, M. Á; Gardim, F.; Gardiner, S.; Gastler, D.; Gauch, A.; Gauvreau, J.; Gauzzi, P.; Gazzana, S.; Ge, G.; Geffroy, N.; Gelli, B.; Gent, S.; Gerlach, L.; Ghorbani-Moghaddam, Z.; Giammaria, T.; Gibin, D.; Gil-Botella, I.; Gilligan, S.; Gioiosa, A.; Giovannella, S.; Girerd, C.; Giri, A. K.; Giugliano, C.; Giusti, V.; Gnani, D.; Gogota, O.; Gollapinni, S.; Gollwitzer, K.; Gomes, R. A.; Bermeo, L. V. Gomez; Fajardo, L. S. Gomez; Gonnella, F.; Gonzalez-Diaz, D.; Gonzalez-Lopez, M.; Goodman, M. C.; Goswami, S.; Gotti, C.; Goudeau, J.; Goudzovski, E.; Grace, C.; Gramellini, E.; Gran, R.; Granados, E.; Granger, P.; Grant, C.; Gratieri, D. R.; Grauso, G.; Green, P.; Greenberg, S.; Greer, J.; Griffith, W. C.; Groetschla, F. T.; Grzelak, K.; Gu, L.; Gu, W.; Guarino, V.; Guarise, M.; Guenette, R.; Guerard, E.; Guerzoni, M.; Guffanti, D.; Guglielmi, A.; Guo, B.; Guo, Y.; Gupta, A.; Gupta, V.; Gurung, G.; Gutierrez, D.; Guzowski, P.; Guzzo, M. M.; Gwon, S.; Habig, A.; Hadavand, H.; Haegel, L.; Haenni, R.; Hagaman, L.; Hahn, A.; Haiston, J.; Hakenmueller, J.; Hamernik, T.; Hamilton, P.; Hancock, J.; Happacher, F.; Harris, D. A.; Hartnell, J.; Hartnett, T.; Harton, J.; Hasegawa, T.; Hasnip, C.; Hatcher, R.; Hayrapetyan, K.; Hays, J.; Hazen, E.; He, M.; Heavey, A.; Heeger, K. M.; Heise, J.; Henry, S.; Morquecho, M. A. Hernandez; Herner, K.; Hewes, V.; Higuera, A.; Hilgenberg, C.; Hillier, S. J.; Himmel, A.; Hinkle, E.; Hirsch, L. R.; Ho, J.; Hoff, J.; Holin, A.; Holvey, T.; Hoppe, E.; Horiuchi, S.; Horton-Smith, G. A.; Hostert, M.; Houdy, T.; Howard, B.; Howell, R.; Hristova, I.; Hronek, M. S.; Huang, J.; Huang, R. G.; Hulcher, Z.; Ibrahim, M.; Iles, G.; Ilic, N.; Iliescu, A. M.; Illingworth, R.; Ingratta, G.; Ioannisian, A.; Irwin, B.; Isenhower, L.; Oliveira, M. Ismerio; Itay, R.; Jackson, C. M.; Jain, V.; James, E.; Jang, W.; Jargowsky, B.; Jena, D.; Jentz, I.; Ji, X.; Jiang, C.; Jiang, J.; Jiang, L.; Jipa, A.; Joaquim, F. R.; Johnson, W.; Jollet, C.; Jones, B.; Jones, R.; Fernández, D. José; Jovancevic, N.; Judah, M.; Jung, C. K.; Junk, T.; Jwa, Y.; Kabirnezhad, M.; Kaboth, A. C.; Kadenko, I.; Kakorin, I.; Kalitkina, A.; Kalra, D.; Kandemir, M.; Kaplan, D. M.; Karagiorgi, G.; Karaman, G.; Karcher, A.; Karyotakis, Y.; Kasai, S.; Kasetti, S. P.; Kashur, L.; Katsioulas, I.; Kauther, A.; Kazaryan, N.; Ke, L.; Kearns, E.; Keener, P. T.; Kelly, K. J.; Kemp, E.; Kemularia, O.; Kermaidic, Y.; Ketchum, W.; Kettell, S. H.; Khabibullin, M.; Khan, N.; Khvedelidze, A.; Kim, D.; Kim, J.; Kim, M.; King, B.; Kirby, B.; Kirby, M.; Kish, A.; Klein, J.; Kleykamp, J.; Klustova, A.; Kobilarcik, T.; Koch, L.; Koehler, K.; Koerner, L. W.; Koh, D. H.; Kolupaeva, L.; Korablev, D.; Kordosky, M.; Kosc, T.; Kose, U.; Kostelecký, V. A.; Kothekar, K.; Kotler, I.; Kovalcuk, M.; Kozhukalov, V.; Krah, W.; Kralik, R.; Kramer, M.; Kreczko, L.; Krennrich, F.; Kreslo, I.; Kroupova, T.; Kubota, S.; Kubu, M.; Kudenko, Y.; Kudryavtsev, V. A.; Kufatty, G.; Kuhlmann, S.; Kumar, J.; Kumar, P.; Kumaran, S.; Kunze, P.; Kunzmann, J.; Kuravi, R.; Kurita, N.; Kuruppu, C.; Kus, V.; Kutter, T.; Kvasnicka, J.; Labree, T.; Lackey, T.; Lambert, A.; Land, B. J.; Lane, C. E.; Lane, N.; Lang, K.; Langford, T.; Langstaff, M.; Lanni, F.; Lantwin, O.; Larkin, J.; Lasorak, P.; Last, D.; Laudrain, A.; Laundrie, A.; Laurenti, G.; Lavaut, E.; Lawrence, A.; Laycock, P.; Lazanu, I.; Lazzaroni, M.; Le, T.; Leardini, S.; Learned, J.; LeCompte, T.; Lee, C.; Legin, V.; Miotto, G. Lehmann; Lehnert, R.; de Oliveira, M. A. Leigui; Leitner, M.; Silverio, D. Leon; Lepin, L. M.; Li, J.-Y.; Li, S. W.; Li, Y.; Liao, H.; Lin, C. S.; Lindebaum, D.; Linden, S.; Lineros, R. A.; Ling, J.; Lister, A.; Littlejohn, B. R.; Liu, H.; Liu, J.; Liu, Y.; Lockwitz, S.; Lokajicek, M.; Lomidze, I.; Long, K.; Lopes, T. V.; Lopez, J.; de Rego, I. López; López-March, N.; Lord, T.; LoSecco, J. M.; Louis, W. C.; Sanchez, A. Lozano; Lu, X.-G.; Luk, K. B.; Lunday, B.; Luo, X.; Luppi, E.; Maalmi, J.; MacFarlane, D.; Machado, A. A.; Machado, P.; Macias, C. T.; Macier, J. R.; MacMahon, M.; Maddalena, A.; Madera, A.; Madigan, P.; Magill, S.; Magueur, C.; Mahn, K.; Maio, A.; Major, A.; Majumdar, K.; Man, M.; Mandujano, R. C.; Maneira, J.; Manly, S.; Mann, A.; Manolopoulos, K.; Plata, M. Manrique; Corchado, S. Manthey; Manyam, V. N.; Marchan, M.; Marchionni, A.; Marciano, W.; Marfatia, D.; Mariani, C.; Maricic, J.; Marinho, F.; Marino, A. D.; Markiewicz, T.; Das Chagas Marques, F.; Marquet, C.; Marsden, D.; Marshak, M.; Marshall, C. M.; Marshall, J.; Martina, L.; Martín-Albo, J.; Martinez, N.; Caicedo, D. A. Martinez; López, F. Martínez; Miravé, P. Martínez; Martynenko, S.; Mascagna, V.; Massari, C.; Mastbaum, A.; Matichard, F.; Matsuno, S.; Matteucci, G.; Matthews, J.; Mauger, C.; Mauri, N.; Mavrokoridis, K.; Mawby, I.; Mazza, R.; Mazzacane, A.; McAskill, T.; McConkey, N.; McFarland, K. S.; McGrew, C.; McNab, A.; Meazza, L.; Meddage, V. C. N.; Mehta, B.; Mehta, P.; Melas, P.; Mena, O.; Mendez, H.; Mendez, P.; Méndez, D. P.; Menegolli, A.; Meng, G.; Mercuri, A. C. E. A.; Meregaglia, A.; Messier, M. D.; Metallo, S.; Metcalf, J.; Metcalf, W.; Mewes, M.; Meyer, H.; Miao, T.; Miccoli, A.; Michna, G.; Mikola, V.; Milincic, R.; Miller, F.; Miller, G.; Miller, W.; Mineev, O.; Minotti, A.; Miralles, L.; Miranda, O. G.; Mironov, C.; Miryala, S.; Miscetti, S.; Mishra, C. S.; Mishra, S. R.; Mislivec, A.; Mitchell, M.; Mladenov, D.; Mocioiu, I.; Mogan, A.; Moggi, N.; Mohanta, R.; Mohayai, T. A.; Mokhov, N.; Molina, J.; Bueno, L. Molina; Montagna, E.; Montanari, A.; Montanari, C.; Montanari, D.; Montanino, D.; Zetina, L. M. Montaño; Mooney, M.; Moor, A. F.; Moore, Z.; Moreno, D.; Moreno-Palacios, O.; Morescalchi, L.; Moretti, D.; Moretti, R.; Morris, C.; Mossey, C.; Mote, M.; Moura, C. A.; Mouster, G.; Mu, W.; Mualem, L.; Mueller, J.; Muether, M.; Muheim, F.; Muir, A.; Mulhearn, M.; Munford, D.; Munteanu, L. J.; Muramatsu, H.; Muraz, J.; Murphy, M.; Murphy, T.; Muse, J.; Mytilinaki, A.; Nachtman, J.; Nagai, Y.; Nagu, S.; Nandakumar, R.; Naples, D.; Narita, S.; Nath, A.; Navrer-Agasson, A.; Nayak, N.; Nebot-Guinot, M.; Nehm, A.; Nelson, J. K.; Neogi, O.; Nesbit, J.; Nessi, M.; Newbold, D.; Newcomer, M.; Nichol, R.; Nicolas-Arnaldos, F.; Nikolica, A.; Nikolov, J.; Niner, E.; Nishimura, K.; Norman, A.; Norrick, A.; Novella, P.; Nowak, J. A.; Oberling, M.; Ochoa-Ricoux, J. P.; Oh, S.; Oh, S. B.; Olivier, A.; Olshevskiy, A.; Olson, T.; Onel, Y.; Onishchuk, Y.; Oranday, A.; Osbiston, M.; Vélez, J. A. Osorio; Ormachea, L. Otiniano; Ott, J.; Pagani, L.; Palacio, G.; Palamara, O.; Palestini, S.; Paley, J. M.; Pallavicini, M.; Palomares, C.; Pan, S.; Panda, P.; Vazquez, W. Panduro; Pantic, E.; Paolone, V.; Papadimitriou, V.; Papaleo, R.; Papanestis, A.; Papoulias, D.; Paramesvaran, S.; Paris, A.; Parke, S.; Parozzi, E.; Parsa, S.; Parsa, Z.; Parveen, S.; Parvu, M.; Pasciuto, D.; Pascoli, S.; Pasqualini, L.; Pasternak, J.; Patrick, C.; Patrizii, L.; Patterson, R. B.; Patzak, T.; Paudel, A.; Paulucci, L.; Pavlovic, Z.; Pawloski, G.; Payne, D.; Pec, V.; Pedreschi, E.; Peeters, S. J. M.; Pellico, W.; Perez, A. Pena; Pennacchio, E.; Penzo, A.; Peres, O. L. G.; Gonzalez, Y. F. Perez; Pérez-Molina, L.; Pernas, C.; Perry, J.; Pershey, D.; Pessina, G.; Petrillo, G.; Petta, C.; Petti, R.; Pfaff, M.; Pia, V.; Pickering, L.; Pietropaolo, F.; Pimentel, V. L.; Pinaroli, G.; Pinchault, J.; Pitts, K.; Plows, K.; Plunkett, R.; Pollack, C.; Pollman, T.; Polo-Toledo, D.; Pompa, F.; Pons, X.; Poonthottathil, N.; Popov, V.; Poppi, F.; Porter, J.; Potekhin, M.; Potenza, R.; Pozimski, J.; Pozzato, M.; Prakash, T.; Pratt, C.; Prest, M.; Psihas, F.; Pugnere, D.; Qian, X.; Raaf, J. L.; Radeka, V.; Rademacker, J.; Radics, B.; Rafique, A.; Raguzin, E.; Rai, M.; Rajagopalan, S.; Rajaoalisoa, M.; Rakhno, I.; Rakotondravohitra, L.; Ralte, L.; Delgado, M. A. Ramirez; Ramson, B.; Rappoldi, A.; Raselli, G.; Ratoff, P.; Ray, R.; Razafinime, H.; Rea, E. M.; Real, J. S.; Rebel, B.; Rechenmacher, R.; Reggiani-Guzzo, M.; Reichenbacher, J.; Reitzner, S. D.; Sfar, H. Rejeb; Renner, E.; Renshaw, A.; Rescia, S.; Resnati, F.; Restrepo, D.; Reynolds, C.; Ribas, M.; Riboldi, S.; Riccio, C.; Riccobene, G.; Ricol, J. S.; Rigan, M.; Rincón, E. V.; Ritchie-Yates, A.; Ritter, S.; Rivera, D.; Rivera, R.; Robert, A.; Rocha, J. L. Rocabado; Rochester, L.; Roda, M.; Rodrigues, P.; Alonso, M. J. Rodriguez; Rondon, J. Rodriguez; Rosauro-Alcaraz, S.; Rosier, P.; Ross, D.; Rossella, M.; Rossi, M.; Ross-Lonergan, M.; Roy, N.; Roy, P.; Rubbia, C.; Ruggeri, A.; Ferreira, G. Ruiz; Russell, B.; Ruterbories, D.; Rybnikov, A.; Saa-Hernandez, A.; Saakyan, R.; Sacerdoti, S.; Sahoo, S. K.; Sahu, N.; Sala, P.; Samios, N.; Samoylov, O.; Sanchez, M. C.; Bravo, A. Sánchez; Sanchez-Lucas, P.; Sandberg, V.; Sanders, D. A.; Sanfilippo, S.; Sankey, D.; Santoro, D.; Saoulidou, N.; Sapienza, P.; Sarasty, C.; Sarcevic, I.; Sarra, I.; Savage, G.; Savinov, V.; Scanavini, G.; Scaramelli, A.; Scarff, A.; Schefke, T.; Schellman, H.; Schifano, S.; Schlabach, P.; Schmitz, D.; Schneider, A. W.; Scholberg, K.; Schukraft, A.; Schuld, B.; Segade, A.; Segreto, E.; Selyunin, A.; Senise, C. R.; Sensenig, J.; Shaevitz, M. H.; Shanahan, P.; Sharma, P.; Kumar, R.; Shaw, K.; Shaw, T.; Shchablo, K.; Shen, J.; Shepherd-Themistocleous, C.; Sheshukov, A.; Shi, W.; Shin, S.; Shivakoti, S.; Shoemaker, I.; Shooltz, D.; Shrock, R.; Siddi, B.; Siden, M.; Silber, J.; Simard, L.; Sinclair, J.; Sinev, G.; Singh, Jaydip; Singh, J.; Singh, L.; Singh, P.; Singh, V.; Chauhan, S. Singh; Sipos, R.; Sironneau, C.; Sirri, G.; Siyeon, K.; Skarpaas, K.; Smedley, J.; Smith, E.; Smith, J.; Smith, P.; Smolik, J.; Smy, M.; Snape, M.; Snider, E. L.; Snopok, P.; Snowden-Ifft, D.; Nunes, M. Soares; Sobel, H.; Soderberg, M.; Sokolov, S.; Salinas, C. J. Solano; Söldner-Rembold, S.; Soleti, S. R.; Solomey, N.; Solovov, V.; Sondheim, W. E.; Sorel, M.; Sotnikov, A.; Soto-Oton, J.; Sousa, A.; Soustruznik, K.; Spinella, F.; Spitz, J.; Spooner, N. J. C.; Spurgeon, K.; Stalder, D.; Stancari, M.; Stanco, L.; Steenis, J.; Stein, R.; Steiner, H. M.; Lisbôa, A. F. Steklain; Stepanova, A.; Stewart, J.; Stillwell, B.; Stock, J.; Stocker, F.; Stokes, T.; Strait, M.; Strauss, T.; Strigari, L.; Stuart, A.; Suarez, J. G.; Subash, J.; Surdo, A.; Suter, L.; Sutera, C. M.; Sutton, K.; Suvorov, Y.; Svoboda, R.; Swain, S. K.; Szczerbinska, B.; Szelc, A. M.; Sztuc, A.; Taffara, A.; Talukdar, N.; Tamara, J.; Tanaka, H. A.; Tang, S.; Taniuchi, N.; Casanova, A. M. Tapia; Oregui, B. Tapia; Tapper, A.; Tariq, S.; Tarpara, E.; Tatar, E.; Tayloe, R.; Tedeschi, D.; Teklu, A. M.; Vidal, J. Tena; Tennessen, P.; Tenti, M.; Terao, K.; Terranova, F.; Testera, G.; Thakore, T.; Thea, A.; Thiebault, A.; Thomas, S.; Thompson, A.; Thorn, C.; Timm, S. C.; Tiras, E.; Tishchenko, V.; Todorović, N.; Tomassetti, L.; Tonazzo, A.; Torbunov, D.; Torti, M.; Tortola, M.; Tortorici, F.; Tosi, N.; Totani, D.; Toups, M.; Touramanis, C.; Tran, D.; Travaglini, R.; Trevor, J.; Triller, E.; Trilov, S.; Truchon, J.; Truncali, D.; Trzaska, W. H.; Tsai, Y.; Tsai, Y.-T.; Tsamalaidze, Z.; Tsang, K. V.; Tsverava, N.; Tu, S. Z.; Tufanli, S.; Tunnell, C.; Turner, J.; Tuzi, M.; Tyler, J.; Tyley, E.; Tzanov, M.; Uchida, M. A.; González, J. Ureña; Urheim, J.; Usher, T.; Utaegbulam, H.; Uzunyan, S.; Vagins, M. R.; Vahle, P.; Valder, S.; Valdiviesso, G. A.; Valencia, E.; Valentim, R.; Vallari, Z.; Vallazza, E.; Valle, J. W. F.; Van Berg, R.; Van de Water, R. G.; Forero, D. V.; Vannozzi, A.; Van Nuland-Troost, M.; Varanini, F.; Oliva, D. Vargas; Vasina, S.; Vaughan, N.; Vaziri, K.; Vázquez-Ramos, A.; Vega, J.; Ventura, S.; Verdugo, A.; Vergani, S.; Verzocchi, M.; Vetter, K.; Vicenzi, M.; de Souza, H. Vieira; Vignoli, C.; Vilela, C.; Villa, E.; Viola, S.; Viren, B.; Vizcaya-Hernandez, A.; Vrba, T.; Vuong, Q.; Waldron, A. V.; Wallbank, M.; Walsh, J.; Walton, T.; Wang, H.; Wang, J.; Wang, L.; Wang, M. H. L. S.; Wang, X.; Wang, Y.; Warburton, K.; Warner, D.; Warsame, L.; Wascko, M. O.; Waters, D.; Watson, A.; Wawrowska, K.; Weber, A.; Weber, C. M.; Weber, M.; Wei, H.; Weinstein, A.; Wenzel, H.; Westerdale, S.; Wetstein, M.; Whalen, K.; Whilhelmi, J.; White, A.; Whitehead, L. H.; Whittington, D.; Wilking, M. J.; Wilkinson, A.; Wilkinson, C.; Wilson, F.; Wilson, R. J.; Winter, P.; Wisniewski, W.; Wolcott, J.; Wolfs, J.; Wongjirad, T.; Wood, A.; Wood, K.; Worcester, E.; Worcester, M.; Wospakrik, M.; Wresilo, K.; Wret, C.; Wu, S.; Wu, W.; Wurm, M.; Wyenberg, J.; Xiao, Y.; Xiotidis, I.; Yaeggy, B.; Yahlali, N.; Yandel, E.; Yang, K.; Yang, T.; Yankelevich, A.; Yershov, N.; Yonehara, K.; Young, T.; Yu, B.; Yu, H.; Yu, J.; Yu, Y.; Yuan, W.; Zaki, R.; Zalesak, J.; Zambelli, L.; Zamorano, B.; Zani, A.; Zapata, O.; Zazueta, L.; Zeller, G. P.; Zennamo, J.; Zeug, K.; Zhang, C.; Zhang, S.; Zhao, M.; Zhivun, E.; Zimmerman, E. D.; Zucchelli, S.; Zuklin, J.; Zutshi, V.; Zwaska, R.; on behalf of the DUNE CollaborationThe Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements and provide comparisons to detector simulations.Item Refining HPCToolkit for application performance analysis at exascale(Sage, 2024) Adhianto, Laksono; Anderson, Jonathon; Barnett, Robert Matthew; Grbic, Dragana; Indic, Vladimir; Krentel, Mark; Liu, Yumeng; Milaković, Srđan; Phan, Wileam; Mellor-Crummey, JohnAs part of the US Department of Energy’s Exascale Computing Project (ECP), Rice University has been refining its HPCToolkit performance tools to better support measurement and analysis of applications executing on exascale supercomputers. To efficiently collect performance measurements of GPU-accelerated applications, HPCToolkit employs novel non-blocking data structures to communicate performance measurements between tool threads and application threads. To attribute performance information in detail to source lines, loop nests, and inlined call chains, HPCToolkit performs parallel analysis of large CPU and GPU binaries involved in the execution of an exascale application to rapidly recover mappings between machine instructions and source code. To analyze terabytes of performance measurements gathered during executions at exascale, HPCToolkit employs distributed-memory parallelism, multithreading, sparse data structures, and out-of-core streaming analysis algorithms. To support interactive exploration of profiles up to terabytes in size, HPCToolkit’s hpcviewer graphical user interface uses out-of-core methods to visualize performance data. The result of these efforts is that HPCToolkit now supports collection, analysis, and presentation of profiles and traces of GPU-accelerated applications at exascale. These improvements have enabled HPCToolkit to efficiently measure, analyze and explore terabytes of performance data for executions using as many as 64K MPI ranks and 64K GPU tiles on ORNL’s Frontier supercomputer. HPCToolkit’s support for measurement and analysis of GPU-accelerated applications has been employed to study a collection of open-science applications developed as part of ECP. This paper reports on these experiences, which provided insight into opportunities for tuning applications, strengths and weaknesses of HPCToolkit itself, as well as unexpected behaviors in executions at exascale.Item Phase Transformation Driven by Oxygen Vacancy Redistribution as the Mechanism of Ferroelectric Hf0.5Zr0.5O2 Fatigue(Wiley, 2024) Zhang, Zimeng; Craig, Isaac; Zhou, Tao; Holt, Martin; Flores, Raul; Sheridan, Evan; Inzani, Katherine; Huang, Xiaoxi; Nag, Joyeeta; Prasad, Bhagwati; Griffin, Sinéad M.; Ramesh, RamamoorthyAs a promising candidate for nonvolatile memory devices, the hafnia-based ferroelectric system has recently been a hot research topic. Although significant progress has been made over the past decade, the endurance problem is still an obstacle to its final application. In perovskite-based ferroelectrics, such as the well-studied Pb[ZrxTi1−x]O3 (PZT) family, polarization fatigue has been discussed within the framework of the interaction of charged defects (such as oxygen vacancies) with the moving domains during the switching process, particularly at the electrode-ferroelectric interface. Armed with this background, a hypothesis is set out to test that a similar mechanism can be in play with the hafnia-based ferroelectrics. The conducting perovskite La-Sr-Mn-O is used as the contact electrode to create La0.67Sr0.33MnO3 / Hf0.5Zr0.5O2 (HZO)/ La0.67Sr0.33MnO3 capacitor structures deposited on SrTiO3-Si substrates. Nanoscale X-ray diffraction is performed on single capacitors, and a structural phase transition from polar o-phase toward non-polar m-phase is demonstrated during the bipolar switching process. The energy landscape of multiphase HZO has been calculated at varying oxygen vacancy concentrations. Based on both theoretical and experimental results, it is found that a polar to non-polar phase transformation caused by oxygen vacancy redistribution during electric cycling is a likely explanation for fatigue in HZO.Item The SNEWS 2.0 alert software for the coincident detection of neutrinos from core-collapse supernovae(IOP Publishing, 2024) Kara, M.; Torres-Lara, S.; Baxter, A. L.; BenZvi, S.; Molla, M. Colomer; Habig, A.; Kneller, J. P.; Lai, M.; Lang, R. F.; Linvill, M.; Milisavljevic, D.; Migenda, J.; Orr, C.; Scholberg, K.; Smolsky, J.; Tseng, J.; Tunnell, C. D.; Vasel, J.; Sheshukov, A.The neutrino signal from the next galactic core-collapse supernova will provide an invaluable early warning of the explosion. By combining the burst trigger from several neutrino detectors, the location of the explosion can be triangulated minutes to hours before the optical emission becomes visible, while also reducing the rate of false-positive triggers. To enable multi-messenger follow-up of nearby supernovae, the SuperNova Early Warning System 2.0 (SNEWS 2.0) will produce a combined alert using a global network of neutrino detectors. This paper describes the trigger publishing and alert formation framework of the SNEWS 2.0 network. The framework is built on the HOPSKOTCH publish-subscribe system to easily incorporate new detectors into the network, and it implements a coincidence system to form alerts and estimate a false-positive rate for the combined triggers. The paper outlines the structure of the SNEWS 2.0 software and the initial testing of coincident signals.