Van der Waals coefficients beyond the classical shell model

dc.citation.articleNumber24312en_US
dc.citation.issueNumber2en_US
dc.citation.journalTitleThe Journal of Chemical Physicsen_US
dc.citation.volumeNumber142en_US
dc.contributor.authorTao, Jianminen_US
dc.contributor.authorFang, Yuanen_US
dc.contributor.authorHao, Panen_US
dc.contributor.authorScuseria, G.E.en_US
dc.contributor.authorRuzsinszky, Adriennen_US
dc.contributor.authorPerdew, John P.en_US
dc.date.accessioned2017-06-05T17:33:45Zen_US
dc.date.available2017-06-05T17:33:45Zen_US
dc.date.issued2015en_US
dc.description.abstractVan der Waals (vdW) coefficients can be accurately generated and understood by modelling the dynamic multipole polarizability of each interacting object. Accurate static polarizabilities are the key to accurate dynamic polarizabilities and vdW coefficients. In this work, we present and study in detail a hollow-sphere model for the dynamic multipole polarizability proposed recently by two of the present authors (JT and JPP) to simulate the vdW coefficients for inhomogeneous systems that allow for a cavity. The inputs to this model are the accurate static multipole polarizabilities and the electron density. A simplification of the full hollow-sphere model, the single-frequency approximation (SFA), circumvents the need for a detailed electron density and for a double numerical integration over space. We find that the hollow-sphere model in SFA is not only accurate for nanoclusters and cage molecules (e.g., fullerenes) but also yields vdW coefficients among atoms, fullerenes, and small clusters in good agreement with expensive time-dependent density functional calculations. However, the classical shell model (CSM), which inputs the static dipole polarizabilities and estimates the static higher-order multipole polarizabilities therefrom, is accurate for the higher-order vdW coefficients only when the interacting objects are large. For the lowest-order vdW coefficient C6, SFA and CSM are exactly the same. The higher-order (C8 and C10) terms of the vdW expansion can be almost as important as the C6 term in molecular crystals. Application to a variety of clusters shows that there is strong non-additivity of the long-range vdW interactions between nanoclusters.en_US
dc.identifier.citationTao, Jianmin, Fang, Yuan, Hao, Pan, et al.. "Van der Waals coefficients beyond the classical shell model." <i>The Journal of Chemical Physics,</i> 142, no. 2 (2015) AIP Publishing LLC.: http://dx.doi.org/10.1063/1.4905259.en_US
dc.identifier.doihttp://dx.doi.org/10.1063/1.4905259en_US
dc.identifier.urihttps://hdl.handle.net/1911/94768en_US
dc.language.isoengen_US
dc.publisherAIP Publishing LLC.en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.titleVan der Waals coefficients beyond the classical shell modelen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Van-der-Waals-coefficients.pdf
Size:
775.2 KB
Format:
Adobe Portable Document Format
Description: