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Van der Waals (vdW) coefficients can be accurately generated and understood by modelling the
dynamic multipole polarizability of each interacting object. Accurate static polarizabilities are the
key to accurate dynamic polarizabilities and vdW coefficients. In this work, we present and study in
detail a hollow-sphere model for the dynamic multipole polarizability proposed recently by two of the
present authors (JT and JPP) to simulate the vdW coefficients for inhomogeneous systems that allow
for a cavity. The inputs to this model are the accurate static multipole polarizabilities and the electron
density. A simplification of the full hollow-sphere model, the single-frequency approximation (SFA),
circumvents the need for a detailed electron density and for a double numerical integration over
space. We find that the hollow-sphere model in SFA is not only accurate for nanoclusters and cage
molecules (e.g., fullerenes) but also yields vdW coefficients among atoms, fullerenes, and small
clusters in good agreement with expensive time-dependent density functional calculations. However,
the classical shell model (CSM), which inputs the static dipole polarizabilities and estimates the static
higher-order multipole polarizabilities therefrom, is accurate for the higher-order vdW coefficients
only when the interacting objects are large. For the lowest-order vdW coefficient C6, SFA and CSM
are exactly the same. The higher-order (C8 and C10) terms of the vdW expansion can be almost
as important as the C6 term in molecular crystals. Application to a variety of clusters shows that
there is strong non-additivity of the long-range vdW interactions between nanoclusters. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4905259]

I. INTRODUCTION

Van der Waals (vdW) attraction1 is an important long-
range nonlocal correlation, arising from instantaneous charge
fluctuations on each density piece that may or may not
belong to the same system. It affects the properties of
materials and many physical and chemical processes. Typical
examples include lattice constants,2,3 cohesive energies,2,4

sublimation energies,5,6 melting and boiling points, disorder
effect of polymers and higher-order geometry configurations
of DNA,7 and physical adsorption of atoms and molecules on
surfaces.8–10 A better understanding and accurate prediction
of the vdW interaction will benefit many branches of science
(e.g., chemistry, physics, materials science, and biology) and
technology (e.g., molecular drug design, hydrogen storage,11

purification, catalyst activity improvement).
The vdW energy between two well-separated spherical

densities can be written as12

EvdW=−
C6

d6 −
C8

d8 −
C10

d10 −···, (1)

where d is the distance between the centers of the two
densities. According to second-order perturbation theory, the
vdW coefficients C2k may be expressed in terms of the dynamic

a)Electronic address: jianmint@sas.upenn.edu. URL: http://www.sas.upenn.
edu/∼jianmint/

multipole polarizability13 αl(iu), i.e.,

CAB
2k =

(2k−2)!
2π

k−2
l1=1

1
(2l1)!(2l2)!

 ∞

0
du αA

l1
(iu)αB

l2
(iu). (2)

Here, iu is imaginary frequency, l2 = k − l1− 1, with l = 1
(dipole), l = 2 (quadrupole), l = 3 (octupole), etc.

The dynamic multipole polarizability is defined as the
linear response of a system to a weak, time-dependent external
electric field14 oscillating at frequency ω. It can be evaluated
with the sum-over-states perturbation expression15

αl(iu)=
∞
n=1

f ln
(En−E0)2+u2 , (3)

with En − E0 being the transition energy from the ground
state Ψ0 to the excited state Ψn and f ln being the oscillator
strength. This approach has been widely used in wavefunction-
based MBPT (many-body perturbation theory),16 coupled
cluster,17 CI (configuration interaction)18 methods, or their
combinations.19,20 While these methods are highly accurate,
they are computationally demanding. The dynamic multipole
polarizability can be alternatively expressed in terms of the
density response function21,22 defined by

χnn(r,r′;iu)= i
 ∞

0
dτe−uτ⟨Ψ|[n̂(r,τ),n̂(r′)]|Ψ⟩. (4)
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In general, the response function χnn(r,r′;iu) is a highly
nonlocal function in both space and time. It can be evalu-
ated from the wave function-based methods23 or calculated
efficiently from less accurate but improvable time-dependent
density functional theory (TDDFT).24

However, application of these approaches to nanosize or
larger systems presents a computational challenge, due to two
facts. First, distorted or perturbed states are very sensitive to
the basis set. To guarantee computational reliability, a large
basis set must be used.25 Second, wave function-based or
first-principles calculations of the vdW coefficients require
knowledge of the dynamic multipole polarizability at each
imaginary frequency point. To overcome this computational
difficulty, many models2,26–29 for the dynamic polarizability
have been proposed. But most of them have been devoted to
the dipole polarizability.

Recently, it has been shown2,29,30 that the higher-order
contribution is much more important than previously believed4

(20% of the leading-order term C6/d6). For lattice constants
and cohesive energies of alkali metals, we found2 that the
higher-order terms such as C8 and C10 can be as large as 50%
of the leading-order contribution. For molecular crystals, we
find in Sec. VI that the C8 and C10 terms can be as important as
the C6 term. Although higher-order contributions are important
in the simulation of the vdW interaction, it is very difficult to
estimate higher-order coefficients, without empirical fitting.
Consequently, they are ignored in most vdW calculations.
We proposed a simple model2,29,31 for the dynamic dipole
polarizability, from which C6 can be obtained accurately. This
model was then extended to the multipole polarizability. The
extension is successful, because higher-order vdW coefficients
such as C8 and C10 generated with the extended model can
achieve the same accuracy (3% mean absolute relative error
for free atom pairs) as the original model for the dipole
polarizability. For convenience, we combine the simple model
and its extension and call the combination the solid-sphere
model. A limitation of the solid-sphere model is that it is only
valid for a density that has no cavity. For any density with a
cavity, the model is unsuitable. To overcome this limitation,
Tao and Perdew have developed30 a hollow-sphere model to
describe the dynamic multipole polarizability for a shell of
density. This model can be further simplified with the single-
frequency approximation (SFA), in which the vdW coefficients
can be expressed without involving numerical integrations in
space and imaginary frequency. When the cavity vanishes,
the hollow-sphere model reduces to the solid-sphere model.
The versatility of the hollow-sphere model allows us, on the
same footing, to study pair interactions between systems that
may or may not have a cavity and that may be small or truly
large. Application of the hollow-sphere model in the single-
frequency approximation to sodium clusters and fullerenes
shows that the single-frequency approximation yields the vdW
coefficients in good agreement (about 7%) with expensive
time-dependent Hartree-Fock (TDHF) theory and TDDFT.

The starting point of the hollow-sphere model is the
classical conducting spherical-shell model,32–34 which was
derived from the classical conducting metallic shell of density
uniform inside and zero outside the shell. This classical shell
model (CSM) has been used to study the asymptotic size-

dependence of the vdW coefficients for fullerenes30,33 and
clusters with no cavity30 and to investigate the convergence
of the vdW asymptotic series of Eq. (1).34 In this work, we
will make a detailed comparison of these models and present
the vdW coefficients for alkali clusters and fullerenes.

In Ref. 30, we studied C6 and its non-additivity for several
pairs of clusters: NaN-NaN , fullerene-fullerene, SiN-SiN ,
GeN-GeN , NaN-fullerene, and hydrogen-terminated silicon
clusters SiN-HM. Here, we will explain our formalism in detail
and apply it further to Li-fullerene, K-fullerene, LiN-LiN ,
KN-KN , NaN-KN , and AlN-AlN cluster pairs. For large
clusters, ours may be the only accurate method that is practical.
Therefore, it can serve as a benchmark for other practical
methods.

It is well-known that semilocal and hybrid density
functionals , employed in a ground-state calculation, cannot
capture the long-range vdW interaction (although some35,36

capture the intermediate range of this interaction). Long-range
vdW corrections to semilocal functionals are now widely
used, and the most popular ones capture some non-additive
effects, although they are not expected to be reliable for
metals. These long-range corrections include fully nonlocal
correlation energy functionals (see Refs. 37 and 28), pairwise
interactions between effective atoms-in-molecules,38,40 and a
model of interacting harmonic oscillators.39 It is also possible
to sum up the whole vdW series approximately, although the
result is still only an asymptotic expression valid for large d.32

II. CLASSICAL SHELL MODEL

Consider a classical conducting spherical shell of uniform
density with outer radius R and shell thickness t. The exact
dynamic multipole polarizability of the shell is given by41

αcsm
l (iu) =


R2l+1 ϵ −1

ϵ + (l+1)/l


1− ρl

1− βl ρl
, (5)

βl =
(ϵ −1)2

[ϵ + l/(l+1)][ϵ + (l+1)/l] , (6)

ρl =

(
R− t

R

)2l+1

, (7)

where ϵ is the dielectric function of the isotropic medium
and ρl defines the “shape” of the shell. The quantity in
brackets of Eq. (5) is the dynamic multipole polarizability of a
classical conducting metallic sphere of uniform density, while
the remaining part arises from the coupling of the sphere and
cavity plasmon vibrations, as seen below. Like the classical
conducting metallic sphere, the classical conducting metallic
spherical shell has a sharp physical boundary for the density.

In the long wavelength or small wave-vector limit, the
dielectric function of the isotropic medium is

ϵ(iu)= 1+ω2
p/u

2, (8)

where ωp =
√

4πn is the plasmon frequency of the extended
uniform electron gas, with n being the electron density.
(Hartree atomic units are used.) Substituting Eq. (8) into Eqs.
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(5) and (6) leads to a simple expression

αcsm
l (iu) =

(
R2l+1 ω2

l

ω2
l
+u2

)
1− ρl

1− βl ρl
, (9)

βl =
ω2

l
ω̃2

l

(ω2
l
+u2)(ω̃2

l
+u2) . (10)

Here, ωl = ωp


l/(2l+1) is the mode plasmon vibrational

frequency of the sphere, and ω̃l =ωp

(l+1)/(2l+1) is the
mode plasmon vibrational frequency of the cavity. When
the cavity vanishes (i.e., t = R), the dynamic multipole
polarizability of the classical shell reduces to that of a classical
solid sphere.

From Eq. (10), we see that, in the zero-frequency limit,
βl = 1. Thus we have

αcsm
l (0)= R2l+1, (11)

which is equivalent to

αcsm
1 (0)= [αcsm

2 (0)]3/5= [αcsm
3 (0)]3/7= · ··. (12)

Thus, in the classical model, higher-order static multipole
polarizabilities αcsm

l
(0) are calculated from αcsm

1 (0), which is
taken to be the accurate static dipole polarizability evaluated
from wave function-based ab initio or first-principles methods
with single-point calculation. The shell thickness affects the
frequency dependence of the dynamic multipole polarizability
via ρl and βl. In the high-frequency (i.e., ω̃l/u≪ 0) limit,
βl = 0 and αcsm

l
(iu)= R2l+1ω2

l
(1− ρl)/u2, which can be recast

into the form

αl(iu)= l⟨r2l−2⟩
u2 , (13)

the exact high-frequency limit.27 For inhomogeneous densi-
ties, αcsm

l
(iu) = R2l+1ω2

l
(1 − ρl)/u2 only satisfies Eq. (13)

approximately. Here, ⟨r2l−2⟩=  ∞0 dr 4πr2ln is the expectation
value. For the classical shell model, the density n in R−t < r <
R is defined by

n= N/V, V = (4π/3)R3− (4π/3)(R− t)3, (14)

with N being the number of valence electrons and V being the
volume of the shell.

The vdW coefficients within the classical model can be
obtained by substituting Eq. (9) into Eq. (2). The result is

C2k =
(2k−2)!

2π

k−2
l1=1

(RA)2l1+1(RB)2l2+1

(2l1)!(2l2)! HAB
l1,l2

IAB
l1,l2

, (15)

where

H = (ωA
l1
)2(ωB

l2
)2(1− ρA

l1
)(1− ρB

l2
), (16)

I =
π

2

[Q+S+ f (aA
l1
,bA

l1
;aB

l2
,bB

l2
)+ f (aB

l2
,bB

l2
;aA

l1
,bA

l1
)]

P (aA
l1
+bA

l1
)(aA

l1
+bB

l2
)(aB

l2
+bA

l1
)(aB

l2
+bB

l2
) ,

(17)

Q = (aA
l1

bA
l1
)2D(aB

l2
,bB

l2
)+ (aB

l2
bB
l2
)2D(aA

l1
,bA

l1
), (18)

S = [(ω̃A
l1
)2+ (ω̃B

l2
)2]aA

l1
aB
l2

bA
l1

bB
l2
(aA

l1
+aB

l2
+bA

l1
+bB

l2
), (19)

P = D(aA
l1
,aB

l2
)D(bA

l1
,bB

l2
), (20)

al =
1
√

2


(ω2

l +ω̃
2
l )−


(ω2

l
−ω̃2

l
)2+4ρlω2

l
ω̃2

l

1/2

, (21)

bl =
1
√

2


(ω2

l +ω̃
2
l )+


(ω2

l
−ω̃2

l
)2+4ρlω2

l
ω̃2

l

1/2

, (22)

with D and f being defined by D(x,y) = x y(x + y) and
f (p,q;s,t) = (ω̃A

l1
)2(ω̃B

l2
)2(p + q)(pq + 2st + s2 + t2). In these

expressions, the superscripts (A, B) and subscripts (l1, l2) have
been dropped without ambiguity.

III. HOLLOW-SPHERE MODEL

As discussed above, the classical shell model is suitable
for nanoscale or larger systems, in which the electron density
is slowly varying. For smaller systems, it is not valid anymore,
because the density in small systems is not slowly varying.
In this case, an obvious problem with the classical shell
model is that classical relationship (12) for the static multipole
polarizability, which is rooted in the fact that the classical shell
has a sharp physical boundary for all orders, can be seriously
wrong. As a result, the classical model may yield a reasonable
estimate for C6, but the error for C8 and C10 can be large. This
expectation has been confirmed in the extreme case of free
atom pairs, for which it is found here (Table I for summarized
results and Tables S1-S3 for details42) that the mean absolute
relative error is only 9% for C6, but the errors for C8 and
C10 are unacceptably large (50% for C8 and 66% for C10).
Furthermore, application to a C60-C60 pair shows30 that while
the classical shell model yields C6 and C8 in good agreement
with the TDHF values, there is a significant deviation for C10.
Therefore, the classical shell model must be generalized.

A. Full hollow-sphere model

A method beyond the classical shell model has been
proposed30 to describe the dynamic multipole polarizability
of a density that allows for a cavity. Since the density may be
diffuse from a surface formed by the nuclear framework, it has
no sharp physical boundary. For such a density, as sketched in
Fig. 1, the dynamic multipole polarizability was assumed to
be

αhsm
l (iu) = 2l+1

4πdl

 Rl

Rl−tl
d3r

(
r2l−2d4

l
ω2

l

d4
l
ω2

l
+u2

)
1

1− β̃l ρ̃l
, (23)

TABLE I. Mean absolute relative error of the vdW coefficients with respect
to highly accurate wave function-based methods for 78 atom-atom pair
interactions calculated from the full hollow-sphere or solid-sphere model
of Eq. (33), SFA of Eq. (37), and the classical shell model of Eq. (15),
respectively. For atoms, we set tl = Rl. Detailed comparison and accurate
reference values can be found from the supplementary material.42 Note the
striking failure of the CSM for C8 and C10 between small objects.

C6 C8 C10

Hollow-sphere model (%) 3a 3a 3a

SFA (%) 9 7 15
Classical shell model (%) 9 50 66

aTaken from Ref. 29.
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FIG. 1. Shell structure of a fullerene cluster. Rn is the average radius of the
nuclear framework, and t is the shell thickness.

β̃l =
d8
l
ω2

l
ω̃2

l

(d4
l
ω2

l
+u2)(d4

l
ω̃2

l
+u2) , (24)

ρ̃l =

(
Rl− tl

Rl

)2l+1

, (25)

where Rl is the effective (or vdW) outer radius of the shell,
while dl is a parameter introduced to ensure that the correct
static and high-frequency limit conditions are satisfied. Here,
the last factor in Eq. (23) adds the cavity effect to the solid
sphere model (see Ref. 29 or Eq. (2) of Ref. 30). It essentially
stems from the last fraction of Eq. (5), but with the constant
electron density in βl replaced by the local density. Similar to
the classical shell model,33,43 the shell thickness tl is defined
for a single-walled fullerene by

Rl = Rn+ tl/2. (26)

(Note that in the classical shell model, both R and t are
l-independent.) Rn is the average radius of the nuclear
framework. Given Rl and the geometric input Rn, we can find
the geometric descriptor tl ≤ Rl that distinguishes a hollow
sphere from a solid sphere. Clearly, the l-dependent vdW shell
coincides with the classical conducting shell (Rl = R and tl = t)
only when the density is uniform within the shell and zero
outside the shell (so that the parameter dl = 1) and when the
higher-order static polarizability satisfies Eq. (12). The two
parameters Rl and dl are determined following Ref. 29. In the
zero-frequency (u→ 0) limit, αhsm

l
(iu) of Eq. (23) reduces to

αhsm
l (iu)= R2l+1

l /dl, (27)

while in the high-frequency (u/ωl,u/ω̃l≫ 1) limit, β̃l→ 0 and

αhsm
l (iu)= ld3

l

 Rl

Rl−tl
d3r r2l−2n(r)


u2. (28)

This means that to restore the exact high-frequency limit, the
excess contribution of the local plasmon frequency outside the
shell of radius Rl must be cutoff. To recover the correct static
and high-frequency [Eq. (13)] limits, Rl and dl must satisfy
the following two equations:

Rl = [dlα
hsm
l (0)]1/(2l+1), (29)

dl =

 ∞

0
dr 4πr2ln(r)

 Rl

Rl−tl
dr 4πr2ln(r)

1/3

. (30)

Since the two equations are coupled together, they must be
solved self-consistently.αhsm

l
(0) is the accurate static multipole

polarizability αl(0) that can be calculated accurately from ab
initio or first-principles methods, which have been documented
in the literature.1,44 Equations (23)–(30) constitute the full
hollow-sphere model. From Eq. (23) we see that when the
cavity vanishes (i.e., tl = Rl, ρl = 0), the hollow-sphere model
reduces to the solid-sphere model. It was shown29 that the
solid-sphere is not only exact in the uniform-gas limit but also
accurate for the H and He atoms. The hollow-sphere model
may be regarded as an interpolation for imaginary frequency
between exact zero- and high-frequency limits. It may be
also regarded as an interpolation for the density between the
uniform-gas limit (paradigm in condensed matter physics)
and one- or two-electron densities (paradigm in quantum
chemistry).

Local polarizability models such as those of Refs. 2, 28,
and 29 can be unsuitable33 to systems that have a cavity. To
see this, we just set ρ̃l to zero in Eq. (23). This leads (at least
for l = 1) to a nearly local polarizability model for the dynamic
polarizability

α
lp
l
(iu)= 2l+1

4πdl

 Rl

Rl−tl
d3r

(
r2l−2d4

l
ω2

l

d4
l
ω2

l
+u2

)
. (31)

The spatial integration limit is from Rl− tl to Rl, because only
the density within the shell contributes, while the contribution
from the density outside the shell has been cutoff. In the static
(u→ 0) limit, we have

α
lp
l
(0)= [R2l+1

l − (Rl− tl)2l+1]/dl . (32)

For a fullerene C60 molecule, the density is quite uniform
due to the electron delocalization, to a good approximation,
so we assume dl = 1. For such a molecule, R1 = 8.11 bohrs,
tl = 2.77 bohrs. Thus the static dipole polarizability in the
local polarizability model is αlp

1 (0)= 381 bohrs3, much smaller
than the TDDFT value 534 bohrs3. (The experimental value is
516±54 bohrs3.)

The vdW coefficients from the full hollow-sphere model
may be expressed as30

C2k =
(2k−2)!

32π3

k−2
l1=1

(2l1+1)(2l2+1)
(2l1)!(2l2)! (dA

l1
dB
l2
)3

×
 RA

l1

RA
l1
−tA

l1

d3rAr2l1−2
A (ωA

l1
)2

×
 RB

l2

RB
l2
−tB

l2

d3rBr2l2−2
B (ωB

l2
)2IAB

l1l2
, (33)

where IAB
l1l2

is defined by Eqs. (17)–(22) but with ωl and ω̃l

replaced by d2
l
ωl and d2

l
ω̃l, ρl of Eq. (7) by ρ̃l of Eq. (25),

and the average valence electron density by the true electron
density. This expression is quite versatile. It allows us to treat
different situations.
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In this work, we will present results mainly for the
hollow-sphere model in the single-frequency approximation,
as defined in Sec. III B.

B. Single-frequency approximation

The full hollow-sphere model requires knowledge of the
true electron density. This requirement can be avoided with
the SFA, in which we assume that (i) only valence electrons
are polarizable, and (ii) for each l, the (vdW or effective)
electron density is uniform (i.e., single plasmon vibrational
frequency) within the shell and zero outside the shell. The
SFA can be regarded either as a simplification of the full
hollow-sphere model or as an extension of the classical shell
model. With assumption (i), we can replace the all-electron
density by the valence electron density in Eq. (30), and with
assumption (ii), we replace the local valence electron density
by the average valence electron density, leading to dl = 1. The
dynamic multipole polarizability in SFA takes the form

αSFA
l (iu)=

(
R2l+1
l

ω2
l

ω2
l
+u2

)
1− ρ̃l

1− β̃l ρ̃l
, (34)

with Rl given by

Rl = [αSFA
l (0)]1/2l+1, (35)

and β̃l and ρ̃l defined by Eqs. (24) and (25), but with the
local electron density replaced by the average valence electron
density and dl = 1. Since both the full hollow-sphere model and
SFA recover the correct static limit, αSFA

l
(0)= αhsm

l
(0)= αl(0).

For clarity, the superscript in αSFA
l1

(0) will be dropped without
ambiguity. Although the functional form of the dynamic
multipole polarizability in SFA is the same as that of the
classical shell model [Eq. (9)], there is an important distinction
between these two methods. In the classical shell model,
we only need the accurate static dipole polarizability as
input, while the higher-order multipole polarizabilities will
be estimated from the classical relationship (12). This leads
to Rl = R and tl = t for any order l. In SFA, the inputs are
the accurate static dipole as well as higher-order multipole
polarizabilities. Therefore, in SFA, the vdW radius Rl and the
effective thickness tl of the shell have a weak l-dependence.
Because we are making a simplified model that satisfies
exact constraints and limits, Rl and tl have only approximate
physical meanings. The average valence electron density is
calculated from

nl = N/Vl, Vl = (4π/3)R3
l − (4π/3)(Rl− tl)3, (36)

which is also l-dependent. Thus, the average valence electron
density and the high-frequency limit in SFA are different from
those in the classical shell model.

In SFA, the expression for the vdW coefficients can be
simplified as

C2k =
(2k−2)!

2π

k−2
l1=1

αA
l1
(0)αB

l2
(0)

(2l1)!(2l2)! HAB
l1,l2

IAB
l1,l2

. (37)

Here, HAB
l1,l2

and IAB
l1,l2

have the same expression as those in the
classical shell model [Eqs. (16)–(22)], but the shape function
and average valence electron density of Eqs. (7) and (14) are

replaced by Eqs. (25) and (36), respectively. Eq. (37) yields
the same C6 coefficients as the CSM does.

IV. “SHAPE” EFFECT UPON THE DYNAMIC
MULTIPOLE POLARIZABILITY

From Eq. (34), we see that the outer radius and the shell
thickness are two important factors that affect the dynamic
multipole polarizability independently. There are many studies
on the cluster size dependence of the static polarizability. This
size dependence has a direct effect on the dynamic multipole
polarizability, because a crucial input in the present theory is
the static multipole polarizability. In order to have a better
understanding of the vdW interaction, we investigate another
effect, the geometry or “shape” effect.

(i) N and Rl are fixed, but tl varies up to Rl. For a given
system, the number of valence electrons N is fixed. The
average valence electron density is then determined by
the outer radius Rl and the shell thickness tl. Let us
first consider a case in which N and Rl are fixed. When
tl → Rl, hollow-sphere model (23) reduces to the solid-
sphere model

αssm
l (iu)= 2l+1

4πdl

 Rl

0
d3r

r2l−2d4
l
ω2

l

d4
l
ω2

l
+u2

, (38)

with dl being given by Eq. (30). Clearly, the density of a
solid sphere is lower than that of a spherical shell. In SFA,
the solid-sphere model takes a very simple form [Eq. (34)
with ρ̃l = 0]. The average electron density, which enters
the formula via ωl, is calculated from

n= N/Vl, Vl =
4π
3

R3
l . (39)

Figure 2 shows the shell thickness dependence of the
dynamic multipole polarizability at imaginary frequency
points u= 0.1, 0.5, 2.0, obtained from the CSM [Eq. (9)],
with all other parameters fixed at the values of the
C60 fullerene. In this calculation, R1 is estimated from
the TDDFT value25 (534 bohrs3) of the static dipole
polarizability, while R2 and R3 are estimated from the
classical relationship of Eq. (11), which yields R1 = R2
= R3= R and thus t1= t2= t3= t. Then, we take a variation
of t from 0 to Rl. For fixed R, the electron density
decreases monotonically with increase of t, as shown
by Eq. (36). From Fig. 2, we observe that the dynamic
multipole polarizability rises fast when t is much less than
its value (2.8 bohrs) for C60, and then increases slowly
with t, and finally reaches a maximum at t = R, where the
density becomes lowest. The vdW coefficients for t = R
can be calculated from Eq. (37). For l = 1 or C6, this is
just the well-known Slater-Kirkwood formula45

C6, t1→R1=
3
2

αA
1 (0)αB

1 (0)
(αA

1 (0)/NA)(1/2)+ (αB
1 (0)/NB)(1/2) . (40)

(ii) N and Rl are fixed, but tl varies down to 0. Now we
reverse the process by squeezing or compressing a shell
of uniform density to a thin shell. Because R is fixed at the
values of C60, this process will make the density infinitely



024312-6 Tao et al. J. Chem. Phys. 142, 024312 (2015)

FIG. 2. Thickness dependence of the dynamic multipole polarizability with
l = 1 (dipole), l = 2 (quadrupole), l = 3 (octupole). All other parameters
(N = 240 and Rl = 8.11 bohrs) are at fixed values of C60.

high as tl → 0. In this limit, the dynamic multipole
polarizability at high frequency is given by

αSFA
l (iu)= R2l+1

l

N

R3
l

l(l+1)
2l+1

u2+ N

R3
l

l(l+1)
2l+1

. (41)

Figure 3 shows αSFA
l

(iu) for t = R, 2.8 (value of C60
molecule), and 0. We observe from Fig. 3 that αSFA

l
(iu)

has a weak t-dependence for all orders l. This suggests
that inflation or compression of systems by changing the
shell thickness t should not change the vdW coefficients
noticeably.

FIG. 3. Dynamic multipole polarizability as a function of u for tl = Rl

(solid sphere), t = 2.8, and t = 0 (thin shell). All other parameters (N = 240
and Rl = 8.11 bohrs) are at fixed values of C60.

The vdW coefficients for tl→ 0 with N and Rl being
held fixed can be calculated with the dynamic multipole
polarizability of Eq. (41). They are given by

CAB
2k, tl→0 =

(2k−2)!
4

k−2
l1=1

αl1(0)αl2(0)
(2l1)!(2l2)!

  (RA
l1
)3

NA

2l1+1
l1(l1+1)

+


(RB

l2
)3

NB

2l2+1
l2(l2+1)


. (42)

For the leading-order coefficient, we find

CAB
6, t1→0=


2
3

CAB
6, t1=R1

. (43)



024312-7 Tao et al. J. Chem. Phys. 142, 024312 (2015)

This suggests that for a given system, squeezing the
volume would reduce C6 by a factor of

√
2/3. This is

because when we squeeze a system to a small volume,
the density becomes high and hard to deform.

(iii) N and n are fixed, but vary tl to 0. Now we consider
the case in which N and the average density n are held
fixed. For C60, N = 240, R1 = R2 = R3 = R = 8.1, and t1
= t2 = t3 = t = 2.8. From Eq. (36), we have Vl = 1599.
When the shell collapses into a solid sphere (i.e, tl = Rl),
the vdW radius of the solid sphere drops from 8.1 to 7.3.
On the other hand, when tl→ 0, we have R2

l
=Vl/(4πtl)→

∞. For a given density and frequency, βl is a constant.
The shape function takes the form of ρl = 1−(2l+1)tl/Rl.
Thus we have

αSFA
l (iu)= R2l−2

l
ω2

l

ω2
l
+u2

(2l+1)R2
l
tl

1− β̃l+ β̃l(2l+1)R2
l
tl/R3

l

, (44)

which is different from the one described by Eq. (41).
This suggests that when electrons move further from
the center, the polarizability will increase. In the static
limit, β̃l = 1 and thus Eq. (44) correctly reduces to
αSFA
l

(iu) = R2l+1
l

. Unlike the static polarizability, the
dynamic polarizability depends significantly upon tl.

(iv) Increase the shell size to R→ ∞, while other parameters
are fixed. Finally, we consider the case when the size
of clusters approaches the extended electron gas. In this
limit, the electron density becomes slowly varying within
the nuclear framework. Thus, the two parameters in Eqs.
(29) and (30) reduce to dl ≈ 1 and Rl ≈ [αl(0)]1/2l+1. The
usual pairwise-based models fail, due to the strong non-
additive nature of vdW interactions. Since the effective
thickness tl is a constant (which is set to be 3.4 bohrs,
independent of cluster size43), the shape function ρl
→ 1− (2l+1)tl/Rl. Thus, our model dynamic multipole
polarizability becomes

αl(iu)=
(
R2l
l

ω2
l

ω2
l
+u2

) (2l+1)t
1− βl

, (45)

where Rl = [αl(0)]1/2l+1. This situation is similar to case
(iii) or Eq. (44).

V. APPLICATION

In this section, we apply the full hollow-sphere model and
SFA to study the vdW coefficients between atoms and clusters
and compare them to the classical shell model. From this
study, we will see the role of the imposed correct conditions
in vdW coefficients. Then, we apply our SFA to study the
non-additivity of the vdW coefficients between metal clusters.

A. Free atom pairs

A major difference between SFA and the classical shell
model is that the higher-order dynamic multipole polarizabil-
ities in SFA satisfy the correct static limit, while those in the
classical shell model do not. To see how this condition affects
the performance of a model dynamic multipole polarizability,
we apply SFA and the classical shell model to calculate the

vdW coefficients C6, C8, and C10 for 78 atom pairs consisting of
rare-gas atoms (He, Ne, Ar, Kr, Xe), hydrogen and alkali-metal
atoms (H, Li, Na, K), and alkaline earth-metal atoms (Be, Mg,
Ca). (For atoms, we set tl = Rl in both models.) The results are
summarized in Table I. (See supplementary material42 for the
detailed comparison for each atom pair.)

From Table I, we see that SFA is significantly better than
the classical model, but less accurate than the full hollow-
sphere or solid-sphere model, which satisfies all important
conditions. Table I also shows that the error in both SFA and
CSM tends to increase from lower order to higher order, while
that of the full hollow-sphere or solid-sphere model remains
nearly the same. There are two reasons for this. First, in the
full hollow-sphere model, the realistic local electron density is
used, while in SFA and CSM, we model the electron density
with the average valence electron density. Second, besides
the recovery of the static limit, the full hollow-sphere model
also respects the high-frequency limit. However, neither SFA
nor CSM satisfies this exact condition. Nevertheless, SFA is
much more accurate than CSM, because the former satisfies
the correct static limit condition for each order, but the latter
satisfies this condition only for dipole polarizability. As shown
for cluster pairs below, the accuracy of CSM rapidly increases
with cluster size and finally merges into SFA when the electron
density becomes slowly varying, as cluster size approaches the
bulk limit.

Table II shows dramatic errors of the classical relationship
between static multipole polarizabilities of atoms. From
Table II, we can observe that CSM tends to underestimate
the higher-order static multipole polarizability for closed-shell
rare-gas atoms, while the tendency reverses for open-shell
atoms. From Tables S1-S3, we can observe that the error of
CSM in the vdW coefficients is smaller for rare-gas dimers,
though still too large, than for dimers or diatomics between
open-shell atoms, such as alkali-metal atom pairs. A possible

TABLE II. Comparison of accurate static multipolar polarizabilities αl(0)
with CSM values for the quadrupole (l = 2) and octupole (l = 3) polariz-
abilities estimated from the classical relationship αcsm

l
(0) = [α1(0)](2l+1)/3.

Hartree atomic units are used.

Atom α1(0) α2(0) α3(0) αcsm
2 (0) αcsm

3 (0)
H 4.50a 15.0a 131.25a 12.27 33.43
He 1.38b 2.331c 9.932c 1.711 2.120
Ne 2.67b 7.33d 42.1d 5.139 9.890
Ar 11.1b 51.84e 534.85e 55.23 274.8
Kr 16.8b 98.43e 1269.6e 110.2 722.9
Xe 27.4b 223.3d 3640.6d 249.0 2263
Li 164.1f 1424g 39 688g 4919 147 430
Na 162.6f 1878g 55 518g 4844 144 305
K 290.2f 5000g 176 940g 12 720 557 563
Be 37.8b 299.9c 4765c 425.7 4795
Mg 71.7b 845.4c 16 772c 1237 21 357
Ca 158.6b 3083d 65 170d 4647 136 157

aFrom Ref. 46.
bFrom Ref. 47.
cFrom Ref. 48.
dFrom Ref. 16.
eFrom Ref. 49.
f From Ref. 50.
gFrom Ref. 51.
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TABLE III. vdW coefficients C6(×103), C8(×105), and C10(×107) (in
Hartree atomic units) between alkali-metal atoms and C60. For atoms, we
set tl = Rl . The input static polarizabilities are taken from Ref. 29 for
alkali-metal atoms and from Ref. 30 for C60. MARE =mean absolute relative
error. CSM = classical shell model. Although reference values for C8 and
C10 are unavailable, Table I suggests that SFA should be much more realistic
than CSM for the higher-order coefficients. For the lowest-order coefficient
C6, CSM = SFA.

C ref
6 CSFA

6 CSFA
8 CSFA

10 CCSM
8 CCSM

10

Li-C60 8.07a 9.14b 18.32 29.88 22.78 46.64
Na-C60 8.52a 9.09 18.92 32.38 22.62 46.21
K-C60 12.95a 12.48 28.41 54.41 35.77 84.90

MARE (%) 7.9

aFrom Ref. 52.
bFrom Ref. 30.

reason is that for open-shell atoms, the electron density is
more spread out into the classical forbidden or tail region than
for closed-shell atoms, in which the electron density is more
compact and thus more suitable for CSM.

B. Atom-fullerene pairs

We further apply SFA to calculate the vdW coefficients
between C60 and alkali-metal atoms and compare them to the
classical shell model. The results are shown in Table III. From
Table III, we can see that the mean absolute relative deviation
of the SFA values for C6 from the TDDFT values52 is 8%,
smaller than that for atom-atom pairs. This is because the
electron density in a fullerene is more slowly varying than that
in an atom and thus can be modelled more accurately with
SFA. However, there is a large discrepancy between SFA and
CSM for C8 and C10. But this discrepancy is again smaller than
that for atom pairs, due to the same reason.

C. Non-additivity of vdW coefficients between metal
clusters

NaN cluster. The sodium cluster is one of the most widely
studied model systems. It can be well modeled by a jellium
sphere.53 For the sodium and other metal clusters discussed
below, we set tl = Rl. Table IV shows comparison of the static
multipole polarizability and vdW coefficients between SFA
and the classical shell or solid-sphere model. From Table IV,

we can see that there is a large discrepancy between SFA and
CSM for the Na atom and the pair interaction Na-Na, but this
discrepancy gets much smaller for the Na20 cluster and pair
interaction Na20-Na20. For the Na92 cluster, SFA gives results
that are nearly the same as those predicted by the classical shell
model. The reason is that in small clusters, the electron density
is not slowly varying so that the classical relationship [Eq. (12)]
between the static multipole polarizabilities is not accurate.
When cluster size increases, the electron density becomes
more slowly varying. In this case, the classical relationship
holds quite well. In this comparative study, the static multipole
polarizabilities of Na20 and Na92 clusters are estimated based
on the jellium model. Early calculations show that for Na20
or a larger cluster, to a good approximation, we may treat the
sodium cluster as jellium.

LiN , KN , NaN-KN , and AlN clusters. The intuitive atom
pairwise interaction picture has been widely used to study the
vdW interaction between two large systems. The popularity
is based on the observation that this picture works quite well
for small and middle-size molecules and accuracy for these
systems can be tested with first-principles calculations. The
simplest version of this picture is that each atom in a cluster
of uniform chemical composition makes equal contribution
to C2k, and that C2k of any size pair interaction can be
decomposed as a sum of all atom pairs formed by each atom
in a cluster with each atom in another cluster. The vdW
coefficients per atom pair for the pair interaction between two
clusters can be found as C2k/NANB, which is size-independent
in a simple atom-pair interaction picture. However, it was
recently found30 that the vdW coefficients per atom pair for
clusters such as NaN , GeN , and especially33 fullerenes CN
exhibit a strong size-dependence. In particular, it was found
that C6 per atom pair displays a decreasing trend for NaN ,
while the trend goes the opposite way for GeN and CN .
This suggests that there exists strong non-additivity of long-
range vdW interactions between nanostructures, leading to the
failure of this picture for nanoclusters. It is interesting to note
that GeN has no usual electron delocalization as NaN and CN
do, because the bulk limit of GeN is a semiconductor.

Here, we apply SFA to study the evolution of the vdW
coefficients per atom pair for LiN , KN , NaN-KN , and AlN
clusters, whose input static polarizabilities per atom are listed
in Table V. The results are tabulated in Tables VI-IX. In our
calculations of C6, accurate static dipole polarizabilities are
used. From Tables VI and VII, we see that our model yields C6

TABLE IV. Comparison of the static multipole polarizabilities α1(0), α2(0)(×103), and α3(0)(×106) for Na, Na20, and Na92 clusters between the realistic values
and the classical shell model (tl = Rl), and the vdW coefficients C6(×104), C8(×106), and C10(×108) between two identical cluster pairs. Atomic units are used.
The input static multipole polarizabilities for SFA are the accurate reference values. Taking SFA as the standard, note the dramatic improvement of CSM with
increasing cluster size. For C6, CSM = SFA.

Cluster α1(0) α2(0) αCSM
2 (0) α3(0) αCSM

3 (0) CSFA
6 CSFA

8 CCSM
8 CSFA

10 CCSM
10

Na 162.6a 1.878a 4.844 0.0555a 0.144 0.156 0.107 0.242 0.093 0.313
Na20 1988b 304.4b 314.3 44.73a 49.69 29.73 239.1c 245.7c 1570 1687
Na92 7481b 2845b 2862 1068b 1095 465.5 9262 9308 152 300 154 600

aTaken from Ref. 29.
bEvaluated from the jellium model with αl = (R + δl)2l+1, where R = N 1/3rs, with rs = 4.0, and δ value for each l is estimated based on Ref. 53. For Na20, δ1 = 1.716,
δ2 = 1.636, and δ3 = 1.529, while for Na92, δ1 = 1.500, δ2 = 1.478, and δ3 = 1.433.
cTaken from Ref. 30.
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TABLE V. Input static dipole polarizability per atom (in atomic units) of Lin, Nan, Kn, and Aln clusters.

Cluster α1(0) Cluster α1(0) Cluster α1(0) Cluster α1(0)
Li2 107.9a Na2 129.8b K2 241.6c Al2 64.10d

Li4 85.60a Na4 127.9b K4 244.5c Al4 49.68e

Li6 84.83a Na6 124.0b K6 218.0c Al6 45.43e

Li8 70.26f Na8 110.5b K8 186.5c Al8 44.00e

Li10 69.39f Na10 105.3b K10 200.7c Al10 43.02e

Li12 68.78f Na12 111.8b K12 198.8c Al12 40.25e

Li14 68.79f Na14 137.7b K14 198.7c Al14 39.19e

Li16 65.19f Na16 K16 180.2c Al16 38.98e

Li18 59.17f Na18 95.83b K18 169.4c Al18 40.63e

Li20 61.00f Na20 99.40b K20 179.1c Al20 38.09e

Li22 62.27f Al22 37.70e

Al24 38.61e

Al26 39.65e

Al28 39.04e

Al30 37.60e

aFrom Ref. 54.
bFrom Ref. 55.
cFrom Ref. 56.
dFrom Ref. 58.
eFrom Ref. 59.
f From Ref. 61.

in good agreement with accurate reference values, in particular
for larger cluster pairs, because the electron density in larger
clusters is more slowly varying and thus can be modelled more
accurately with SFA and CSM, compared to small cluster pairs
such as Li2 (see Table VI), suggesting the consistently good
accuracy of our model for clusters. From Tables VI-IX, we
see that the vdW coefficients per atom pair for these metal
clusters display a strong decreasing trend with cluster size,
suggesting the strong non-additivity of vdW coefficients for
metal clusters, as observed for sodium clusters. This confirms
our early finding.30

As in Ref. 30, we find that C6/NANB increases or
decreases with NA accordingly as αA(0)/NA does. A similar
effect in passivated Si clusters was explained by Botti et al.60

in terms of a bond polarization model. A possible explanation

TABLE VI. vdW coefficients C6(×103) per atom pair (in atomic units) for
Li cluster pairs (tl = Rl). The input of the accurate dipole polarizability for
each cluster is taken from Table IV. The variation of C6 per atom pair with
cluster size in Tables Tables V-VIII is an indicator of strong non-additivity of
the vdW interactions between nanoclusters. For C6, CSM = SFA.

C ref
6 /atom pair CSFA

6 /atom pair

Li2-Li2 0.684a 0.8420
Li4-Li4 0.512a 0.594
Li6-Li6 0.493a 0.586
Li8-Li8 0.405a 0.442
Li10-Li10 0.381a 0.434
Li12-Li12 0.428
Li14-Li14 0.428
Li16-Li16 0.395
Li18-Li18 0.341
Li20-Li20 0.357
Li22-Li22 0.369

aTaken from Ref. 54.

for the decrease in static dipole polarizability per atom in the
metals (Table V) is suggested by the stabilized jellium model:62

apart from small shell-structure oscillations, the polarizability
is (R++ δ)3, where R+ is the radius of the uniform positive
background in the jellium or stabilized jellium models, and
δ > 0 measures the spill-over of the electron density beyond
the boundary R+ of the positive background, while the number
of atoms is proportional to R3

+, and the ratio (R++ δ)3/R3
+

decreases down to 1 with increasing R+.
Our Tables VI-IX include the interactions between

diatomic molecules (e.g., Na2-Na2). Because the densities of
diatomic molecules can be far from spherical,63,64 our models
are less reliable but still useful for the vdW interactions
between diatomics (e.g., Li2-Li2, K2-K2, and Na2-K2). The
electron density in larger clusters can be more spherical and
more slowly varying than in a diatomic molecule, and thus
better suited to our models. But our hollow-sphere and SFA
models work remarkably well (as shown earlier in Table I)

TABLE VII. vdW coefficients C6(×103) per atom pair (in atomic units) for
K cluster pairs (tl = Rl). The input of the accurate dipole polarizability for
each cluster is taken from Table IV. For C6, CSM = SFA.

C ref
6 /atom pair CSFA

6 /atom pair

K2-K2 3.000a 2.816
K4-K4 2.923a 2.866
K6-K6 2.553a 2.414
K8-K8 2.317a 1.910
K10-K10 2.08a 2.132
K12-K12 2.101
K14-K14 2.101
K16-K16 1.814
K18-K18 1.653
K20-K20 1.798

aTaken from Ref. 54.
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TABLE VIII. vdW coefficients C6(×103) per atom pair (in atomic units)
between Na and K clusters (tl = Rl). The input of the accurate dipole
polarizability for each cluster is taken from Table IV. For C6, CSM = SFA.

C ref
6 /atom pair CSFA

6 /atom pair

Na2-K2 1.750a 1.749
Na4-K4 1.790a 1.744
Na6-K6 1.540a 1.568
Na8-K8 1.251a 1.280
Na10-K10 1.344a 1.300
Na12-K12 1.330a 1.353
Na14-K14 1.292a 1.411
Na18-K18 1.074a 1.069
Na20-K20 1.202a 1.145

aTaken from Ref. 57.

even for free atoms, which are perfectly spherical but furthest
from the slowly varying limit.

VI. RELATIVE IMPORTANCE OF C8 AND C10

According to MBPT, the vdW energy is a sum of an
infinite power series of the inverse d given by Eq. (1). If
d is large enough as in a core-core pair interaction for alkali
metals, the asymptotic expansion of Eq. (1) is valid and directly
applicable. We have found2 that at the equilibrium distance, the
higher-order contribution can be as large as 50% of the leading-
order term for alkali metals. We have found here (Fig. 4)
that for a C60 molecular crystal at the equilibrium distance,
C6/d6 : C8/d8 : C10/d10 = 1.0 : 0.9 : 0.7. This ratio may vary
from one molecular solid to another. Here is just an example
showing the relative importance of higher-order contributions
in the vdW energy. To get a better understanding, we calculate
the contribution of each term in Eq. (1) for two molecular
crystals C60 and C70. The variation of each term with the
separation distance is plotted in Fig. 4. From Fig. 4, we observe
that at the equilibrium distance, the contribution of the C8 term

TABLE IX. vdW coefficients C6(×103) per atom pair (in atomic units) for
Al cluster pairs (tl = Rl). The input of the accurate dipole polarizability for
each cluster is taken from Table IV. For C6, CSM = SFA.

CSFA
6 /atom pair

Al2-Al2 0.667
Al4-Al4 0.455
Al6-Al6 0.398
Al8-Al8 0.379
Al10-Al10 0.367
Al12-Al12 0.332
Al14-Al14 0.319
Al16-Al16 0.316
Al18-Al18 0.336
Al20-Al20 0.305
Al22-Al22 0.301
Al24-Al24 0.312
Al26-Al26 0.324
Al28-Al28 0.317
Al30-Al30 0.300

FIG. 4. Contributions of the leading and high-order terms to the vdW energy
C2k as a function of separation distance between the centers of two density
fragments. Upper panel for C60-C60 pair, and lower panel for C70-C70 pair.
The equilibrium distance is 18.9 bohrs for C60 solid (upper panel) and
20.0 bohrs for C70 solid (lower panel). (C6, C8, and C10 are SFA values from
Ref. 30.).

is nearly the same as that of the C6 term, while the C10 term
is slightly less important. When the separation d increases, all
the contributions decay fast, but the C10 term decays fastest,
followed by C8 and then by C6.

VII. CONCLUSION

In summary, we have studied the properties of the dynamic
multipole polarizability with the hollow-sphere model and
applied it to study the vdW coefficients for systems that allow
for a cavity. Compared to the classical shell model, which
requires only the static dipole polarizability as input, the
hollow-sphere model needs the static multipole polarizability
as input, but it provides a more accurate description in
particular for systems smaller than nanoscale. While there
is little difference between these two models when applied to
large systems, a noticeable difference has been observed for
C10 for interactions with fullerenes. We have further shown
that higher-order contributions can be more important than
the leading-order term in some cases such as fullerenes in
the solid phase. For an accurate simulation of the vdW effect,
considering C6 alone may not be enough. The large size and
the strong nonadditivity33,65,66,30 of vdW interactions present



024312-11 Tao et al. J. Chem. Phys. 142, 024312 (2015)

a major challenge to physicists and chemists in the modeling
of nanostructures, while the present approach may reduce this
difficulty.
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