Accelerating the LSTRS Algorithm

dc.contributor.authorLampe, J.en_US
dc.contributor.authorRojas, M.en_US
dc.contributor.authorSorensen, D.C.en_US
dc.contributor.authorVoss, H.en_US
dc.date.accessioned2018-06-19T17:45:08Zen_US
dc.date.available2018-06-19T17:45:08Zen_US
dc.date.issued2009-07en_US
dc.date.noteJuly 2009en_US
dc.description.abstractIn a recent paper [Rojas, Santos, Sorensen: ACM ToMS 34 (2008), Article 11] an efficient method for solvingthe Large-Scale Trust-Region Subproblem was suggested which is based on recasting it in terms of a parameter dependent eigenvalue problem and adjusting the parameter iteratively. The essential work at each iteration is the solution of an eigenvalue problem for the smallest eigenvalue of the Hessian matrix (or two smallest eigenvalues in the potential hard case) and associated eigenvector(s). Replacing the implicitly restarted Lanczos method in the original paper with the Nonlinear Arnoldi method makes it possible to recycle most of the work from previous iterations which can substantially accelerate LSTRS.en_US
dc.format.extent11 ppen_US
dc.identifier.citationLampe, J., Rojas, M., Sorensen, D.C., et al.. "Accelerating the LSTRS Algorithm." (2009) <a href="https://hdl.handle.net/1911/102128">https://hdl.handle.net/1911/102128</a>.en_US
dc.identifier.digitalTR09-26en_US
dc.identifier.urihttps://hdl.handle.net/1911/102128en_US
dc.language.isoengen_US
dc.titleAccelerating the LSTRS Algorithmen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR09-26.pdf
Size:
185.75 KB
Format:
Adobe Portable Document Format