
ACCELERATING THE LSTRS ALGORITHM

J. LAMPE ∗, M. ROJAS † , D.C. SORENSEN ‡ , AND H. VOSS §

Abstract. In a recent paper [Rojas, Santos, Sorensen: ACM ToMS 34 (2008), Article 11] an
efficient method for solving the Large-Scale Trust-Region Subproblem was suggested which is based
on recasting it in terms of a parameter dependent eigenvalue problem and adjusting the parameter
iteratively. The essential work at each iteration is the solution of an eigenvalue problem for the
smallest eigenvalue of the Hessian matrix (or two smallest eigenvalues in the potential hard case) and
associated eigenvector(s). Replacing the implicitly restarted Lanczos method in the original paper
with the Nonlinear Arnoldi method makes it possible to recycle most of the work from previous
iterations which can substantially accelerate LSTRS.
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1. Introduction. We consider the Large-Scale Trust-Region Subproblem (LSTRS
problem) to minimize a quadratic function subject to a spherical constraint

min
x
ψ(x) :=

1
2
xTHx+ gTx subject to ‖x‖ ≤ ∆ (1.1)

where H = HT ∈ Rn×n, g ∈ Rn and ∆ > 0 are given.
Problem (1.1) arises for example in connection with the trust region globalization

strategy in optimization. A special case of (1.1) is the least squares problem with a
norm constraint which is equivalent to Tikhonov regularization for discrete forms of
ill-posed problems.

If it is possible to compute the Cholesky factorization of matrices of the form
H − λI the method of choice is the one proposed by Moré and Sorensen [10] which
uses Newton’s method to find a root of a scalar function. This is reasonable if the
matrix H is not too large and given explicitly.

Hager in [2] introduced the sequential subspace method (SSM). A sequence of
four dimensional subspaces Sk is generated that act as additional constraint x ∈ Sk
for (1.1). (Here the inequality has to be replaced by the equality constraint ‖x‖ = ∆).
The ingredients of the subspaces are the current iterate xk, the gradient of ψ(x) at
xk, an estimate of the smallest eigenvector of H and an approximation of the SQP
iterate (i.e. Newton’s method applied to the first-order optimality system). The
first three vectors are sufficient for linear global convergence, proven by Hager and
Park in [3]. By inserting the SQP iterate into the search space the convergence is
locally quadratic. The calculation of an SQP iterate exhibits a strong connection to
the Jacobi-Davidson algorithm of Sleijpen and Van der Vorst [18]. The main costs
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of SSM are the approximate solutions of a sequence of linear systems. These linear
systems are treated independently by variants of MINRES, i.e. there is no reuse of
information from previous iteration steps except for the current iterate xk itself.

The approach of Sorensen in [21] involved the solution of a related parametric
eigenvalue problem. The parameter is adjusted within a sequence of eigenproblems
since the solution does fulfill the bound condition. At the same time Rendl and
Wolkowicz [12] came out with a very similar idea using the same parametric eigenvalue
problems. The resulting algorithms are different in spirit: While Sorensen attempts
to satisfy the optimality condition, Rendl and Wolkowicz try to reduce the duality
gap in a primal-dual semidefinite programming framework.

In a nice survey of Fortin and Wolkowicz [1], the Generalized Lanczos Trust
Region Algorithm was compared to the above mentioned algorithm in [10] and an
improved version of the algorithm in [12].

The drawback of switching the algorithms in the hard case in [21] has been an-
alyzed and removed by Rojas, Santos and Sorensen and they suggested in a recent
paper [15] the LSTRS algorithm.

The LSTRS method is based on a reformulation of (1.1) as a parameter dependent
eigenvalue problem

Bαy :=
(
α gT

g H

)(
1
x

)
= λ

(
1
x

)
(1.2)

where the real parameter α has to be adjusted such that the solution of (1.1) can
be read off from the smallest eigenvalue of (1.2) and the (appropriately normalized)
corresponding eigenvector. To this end one has to solve a sequence of eigenvalue
problems Bαk

yk = λkyk for the smallest eigenpair (λk, yk) (and for a second eigenpair
in the potential hard case) which is the essential cost of every step of the LSTRS
method.

In [15] the eigenvalue problems are solved by the implicitly restarted Lanczos
method [19] implemented in ARPACK [9] and included into MATLAB as function
eigs. As the sequence of parameters {αk} produced by the LSTRS algorithm con-
verges to some α∗, the matricesBαk

converge as well. Therefore, it should be beneficial
to reuse information from previous steps when solving Bαk

y = λy in the current step.
Recycling of prior information can be accomplished in ARPACK by choosing the
eigenvector of the last step corresponding to the smallest eigenvalue as initial vector
in the next step. However, this usually does not significantly speed convergence.

An eigensolver that is able to use all information acquired in previous iteration
steps is the the Nonlinear Arnoldi method which was introduced in [22] for solving
nonlinear eigenvalue problems. As an iterative projection method it determines an
approximation to an eigenpair from the projection V TBαk

V z = λz of the eigenprob-
lem to a subspace V of small dimension, and it expands V if the approximation does
not meet a specified accuracy. It is obvious that these projected problems can be
updated and reused without further cost when changing the parameter α. In this
paper we discuss this modification of the LSTRS algorithm and we demonstrate its
capability to accelerate the LSTRS approach with several examples. Note that the
algorithms of [12] and the improved version in [1] could be accelerated in exactly the
same way as presented here for LSTRS.

The paper is organized as follows. Section 2 briefly sketches the relation between
the LSTRS problem (1.1) and the parametrized eigenvalue problem (1.2) and the
approach of the LSTRS algorithm. In Section 3 we describe the Nonlinear Arnoldi
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method and how it is included into the LSTRS algorithm, and Section 4 demonstrates
the improvement of LSTRS by recycling of prior information with several examples.

2. The LSTRS method. In this section we briefly describe the LSTRS method.
Its theoretical foundation and a discussion of its convergence properties is contained in
[13, 14, 16], and a detailed description of the LSTRS algorithm with special emphasis
on computational aspects is presented in [15].

The trust-region subproblem (1.1) always has a solution. The following charac-
terization was proved in [20].

Lemma 2.1. A feasible vector x∗ is a solution to (1.1) with corresponding La-
grange multiplier λ∗ if and only if x∗ and λ∗ satisfy (H − λ∗I)x∗ = −g with H − λ∗I
positive semidefinite, λ∗ ≤ 0, and λ∗(∆− ‖x∗‖) = 0.

Lemma 2.1 implies that all solutions of the trust-region subproblem are of the
form x∗ = −(H −λ∗I)†g+ z, for some z ∈ N (H −λ∗I) where A† denotes the pseudo
inverse of a matrix A and N (A) the null space of A. If the Hessian matrix H is
positive definite and if it holds that ‖H−1g‖ < ∆, problem (1.1) has a unique interior
solution given by x∗ = −H−1g, with Lagrange multiplier λ∗ = 0. If H is positive
semidefinite or indefinite, there exist boundary solutions satisfying ‖x∗‖ = ∆ and
λ∗ ≤ δ1 ≤ 0 where δ1 denotes the smallest eigenvalue of H. In this paper, we only
consider the case that there exists a boundary solution.

Lemma 2.1 reveals the relationship between the trust-region subproblem (1.1)
and the eigenvalue problem (1.2): For real α let λ1(α) be the smallest eigenvalue of
Bα and y be a corresponding eigenvector.

We first consider the case that the first component of y is different from 0, and
can be scaled to be equal to one. For such an eigenvector y = (1, xT )T we have

α− λ1(α) = −gTx, (2.1)

and

(H − λ1(α)I)x = −g. (2.2)

Equation (2.2) demonstrates that two of the conditions of Lemma 2.1 are automati-
cally satisfied: (H −λ1(α)I)x = −g, and since the eigenvalues of H interlace those of
Bα, H−λ1(α)I must be positive semidefinite. Therefore, the parameter α simply must
be adjusted to satisfy the two remaining properties λ1(α) ≤ 0 and λ1(α)(∆−‖x‖) = 0.

Taking advantage of (2.1) α can be updated according to

α+ = λ1(α)− gTx = λ1(α) + gT (H − λ1(α)I)†g =: λ1(α) + φ(λ1(α)).

φ(λ) = gT (H − λI)†g is a rational function with possible poles at the eigenvalues
of H which is too expensive to evaluate. LSTRS therefore employs a rational in-
terpolate φ̂(λ) of φ(λ) based on the Hermitian data φ(λ) = −gTx and φ′(λ) =
gT ((H − λI)†)2g = xTx. The new value α+ is then computed as α+ = λ̂ + φ̂(λ̂)
where λ̂ is determined such that φ̂′(λ̂) = ∆2.

The previous approach assumes that there exists an eigenvector corresponding to
the smallest eigenvalue of Bα the first component of which can be scaled to one. It
breaks down if all eigenvectors associated with λ1(α) have first component zero. This
can only happen when g is orthogonal to the eigenspace S1 of H corresponding to δ1.
If g ⊥ S1 there is the possibility for the occurrence of the hard case (cf. [10]), and
therefore this situation is called potential hard case [14].
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It was shown in [14] that in a potential hard case for all values of α greater than
a certain critical α̃ all eigenvectors associated with λ1(α) have first component zero.
But for any α there is a well defined eigenvector of Bα depending continuously on
α that can safely be normalized to have first component one. If g 6⊥ S1 or g ⊥ S1

and α ≤ α̃ then this eigenvector corresponds to the smallest eigenvalue λ1(α), and if
g ⊥ S1 and α exceeds α̃ by a small amount it is associated with the second smallest
eigenvalue. It is this eigenpair which is used in LSTRS to construct the rational
Hermitian interpolation φ̂ mentioned earlier.

Above we sketched the essential ingredients of the LSTRS method demonstrating
that the main cost in every iteration step is the solution of the eigenvalue problem (1.2)
with fixed α for the smallest eigenvalue or the two smallest eigenvalues in the potential
hard case and a corresponding eigenvector. The real software uses a safeguarding
strategy to ensure the global convergence of {αk} to its optimal value, and it employs
the eigenpairs (λ1(αk), xk) and (λ1(αk−1), xk−1) from the last two iteration steps when
constructing the rational interpolation φ̂ to generate the next parameter αk+1 = λ̂+
φ̂(λ̂). It was shown in [14], Theorem 5.1 that the resulting algorithm is superlinearly
convergent.

3. Nonlinear Arnoldi. Solving a large-scale symmetric eigenvalue problem for
the smallest or two smallest eigenvalues and corresponding eigenvectors the method
of choice is the implicitly restarted Lanczos method. However, in LSTRS a sequence
of eigenproblems depending continuously on a convergent parameter has to be solved,
and one should take advantage of information gained in previous iteration steps. The
only freedom of Krylov subspace methods like Lanczos is the choice of the initial
vector, and consequently in the original LSTRS method the kth iteration step is
initialized by the eigenvector of the (k − 1)th step.

An eigensolver that is able to make use of all information from previous itera-
tion steps is the Nonlinear Arnoldi method, which was introduced in [22] for solving
nonlinear eigenvalue problems. As an iterative projection method it computes an
approximation to an eigenpair from a projection to a subspace of small dimension,
and it expands the subspace if the approximation does not meet a given accuracy
requirement. These projections can be easily reused when changing the parameter
αk.

Although the Nonlinear Arnoldi method is usually more expensive than the im-
plicitly restarted Lanczos method when solving a single eigenproblem the heavy reuse
of information gained from previous steps leads to a significant speed-up in LSTRS,
since almost all necessary information for solving Bαk+1y = λy is already contained
in the subspace, that has been built up for solving Bαk

y = λy.

In regularized total least squares (RTLS) a similar technique has been successfully
applied in [5, 7] for accelerating the RTLS solver in [17] which is based on a sequence
of quadratic eigenvalue problems. Another method for RTLS presented in [11] which
is based on a sequence of linear eigenproblems has also been accelerated substantially
in [6, 8].

The following algorithm is used in LSTRS for solving

Tk(λ)y = (B0 + αkN − λI)y =
((

0 gT

g H

)
+ αke1e

T
1 − λI

)
y = 0
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Algorithm 1 Nonlinear Arnoldi
1: Start with initial basis V , V TV = I
2: For fixed αk find smallest eigenvalue µ of V TTk(µ)V z = 0 and corresponding

eigenvector z
3: Determine preconditioner PC ≈ T−1

k (µ)
4: Set u = V z, r = Tk(µ)u
5: while ‖r‖/‖u‖ > ε do
6: v = PCr
7: v = v − V V T v
8: ṽ = v/‖v‖, V = [V, ṽ]
9: Find smallest eigenvalue µ of V TTk(µ)V z = 0 and corresponding eigenvector z

10: Set u = V z, r = Tk(µ)u
11: end while

The Nonlinear Arnoldi method allows thick starts in line 1, i.e. when solving
Tk(λ)y = 0 in step k of the LSTRS method, algorithm 1 is started with the orthonor-
mal basis V that was used in the preceding iteration step when determining the
solution yk−1 = V z of V TTk−1(λ)V z = 0. So all search spaces of previous problems
are kept.

The projected problem in the kth iteration step

V TTk(µ)V z =
(
V TB0V + αk(eT1 V )T (eT1 V )− µI

)
z = 0 (3.1)

can be achieved immediately from the previous step since the matrices V , V TB0V
and v1 = V (1, :) are known. Within the iteration these matrices are obtained on-the-
fly by appending one column to V and one column and row to V TB0V , respectively.
This update relies on matrix-vector products only, and does not require the matrix
B0 explicitly.

At Step 7, numerical orthogonality of v with respect to V is enforced by a re-
orthogonalization step if necessary. If v = 0 after Step 7 is completed, the iteration
must halt. However, this is a fortunate event as it would imply r = 0. This is because
v = 0 would imply V s = PCr for some s. Hence, rTPCr = rTV s = 0 by virtue of
Step 9 which in turn implies r = 0 since PC is positive definite. Therefore, the test
at Step 5 would have already halted the iteration with a numerical solution.

The LSTRS method with Nonlinear Arnoldi can be executed with low and fixed
storage requirements. For memory allocation purposes a maximal dimension p � n
of the search space span(V ) can be set in advance, and if in the course of the LSTRS
method the dimension of V reaches p, then the Nonlinear Arnoldi method can be
restarted with a subspace spanned by a small number q of eigenvectors corresponding
to the smallest eigenvalues of Tk(λ).

LSTRS requires an eigenvector associated with the smallest eigenvalue of Tk(λ).
An additional eigenvector is needed only if the first eigenvector cannot be safely
scaled to have one as a first component The implicitly restarted Lanczos method
approximates eigenvectors corresponding to extreme eigenvalues simultaneously, and
therefore in the original version of LSTRS two eigenvectors are returned by eigs in
every iteration step. The Nonlinear Arnoldi method aims at one eigenpair at a time.
In algorithm 1 this is the smallest one. If a second eigenvector is needed the search
space V can be further extended now aiming at the second smallest eigenvalue µ in
statement 9.

A few further comments are in order:
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— To solve the very first eigenproblem with the Nonlinear Arnoldi it is recom-
mended to put some useful information in the starting basis V . An orthonor-
mal basis of the Krylov subspace K`(B0, e1) with a small value of ` ≈ 5 is a
suitable choice.

— The projected eigenproblems in line 2 and 9 can be solved by a dense solver
for all eigenvalues; in the examples MATLABs eig has been used.

— For general nonlinear eigenproblems the nonlinear Arnoldi usually requires a
preconditioner. For this application, PC would need to be positive definite if
it is to approximate the inverse of a positive definite matrix, PC ≈ T−1

k (µ).
For the test examples in Section 4 the method always worked fine without it,
i.e. PC = I.

— For a least squares problem with norm constraint the explicit form of the ma-
trix H = ATA is not needed to determine the projected matrix V TB0V , but
it can be updated according to V TB0V = ([−b, A]V )T ([−b, A]V )− ‖b‖2vT1 v1

(recalling that v1 is the first row of V ).
The advantage of using the Nonlinear Arnoldi method in LSTRS over the implic-

itly restarted Lanczos method is due to the fact that thick starts are possible. This
holds true also for other iterative projection approaches like the Jacobi–Davidson
method where the search space span(V ) is expanded by an approximate solution of
the correction equation

(
I − uuT

uTu

)
Tk(µ)

(
I − uuT

uTu

)
v = Tk(µ)u, v ⊥ u. (3.2)

However, solving (3.2) will usually be much more expensive than the Nonlinear
Arnoldi expansion v = PC ·Tk(µ)u. For really huge problems where storage is critical
and only coarse preconditioners are available, Jacobi–Davidson could be beneficial be-
cause the correction equation can be solved by a Krylov solver with short recurrence.

4. Numerical examples. In order to evaluate the performance of LSTRS using
Nonlinear Arnoldi as eigensolver, we used a modified version of LSTRS where the
second eigenpair is calculated only when needed. In this case, the Nonlinear Arnoldi
method is called again and a second eigenpair is computed.

Numerical experiments were performed on different problem classes. The first
class consisted of regularization problems. For those problems, the matrix H is usually
close to singular and the vector g is nearly orthogonal to S1. Therefore, a (near)
potential hard case is always present and, depending on the value of ∆, the hard case
is also present.

The second problem class consisted of shifted Laplacian problems with Hessian
matrix H = L− 5I, where L is a discrete version of the 2-D Laplacian. The diagonal
shift makes H indefinite. Both the easy and the hard case were considered.

In the third problem class, the matrix H was of the form H = UDUT , with D a
diagonal matrix and U a Householder matrix. Due to the complete knowledge of H,
all cases can be very easily generated and investigated.

We studied the performance of LSTRS when different eigensolvers were used. For
the regularization problems, we compared the following eigensolvers. IRLM+H: the
IRLM combined with the heuristics described in [15]. IRLM+T: the IRLM combined
with a Tchebyshev Spectral Transformation as described in [16]. NLArn: the Nonlin-
ear Arnoldi method described in Section 3. For the other two classes of problems, we
compared the IRLM with NLArn. The specific LSTRS settings are described under
each class of problems.
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The numerical tests were run under MATLAB R2008a on a PentiumR4 computer
with 3.4 GHz and 8GB RAM, running the Linux operating system.

4.1. Regularization Problems. The regularization problems were taken from
the Regularization Tools package [4]. Most of the problems in this package are dis-
cretizations of Fredholm integral equations of the first kind, which are typically very
ill-conditioned.

Regularized solutions were computed by solving the following quadratically-con-
strained least squares problem:

min
x

1
2
‖Ax− b‖2 subject to ‖x‖ ≤ ∆, (4.1)

where A ∈ Rm×n, m ≥ n, and b ∈ Rm. The matrix A comes from the discretization of
an operator in an ill-posed problem and is typically very ill-conditioned. Problem (4.1)
is equivalent to a trust-region problem of type (1.1) with H = ATA and g = −AT b.

The MATLAB routines heat, ilaplace, parallax, phillips and shaw from [4]
provided the matrices A and the right-hand sides b. Except for parallax, the routines
also provided the true solutions xtrue and ∆ = ‖xtrue‖ was used for those problems.
For problem parallax, ∆ = 5 was used.

No noise was added to the vector b since the absence of noise yields a more difficult
trust-region problem for which the potential (near) hard case is present in a multiple
instance (cf. [15, 16]). The parameters for LSTRS were chosen as in [15] and were as
follows. The values epsilon HC = 1e-16 and epsilon Int = 0 were used to make a
boundary solution more likely. The values epsilon Delta = 1e-2 and max eigentol
= 0.4 were used in all experiments, except for the mildly ill-posed heat problem for
which epsilon Delta = 1e-3 and max eigentol = 0.7. The initial vector for the
first call to the IRLM was v0 = (1, . . . , 1)T /

√
n+ 1 and the total number of vectors

was fixed at 8. For NLArn, the maximum dimension of the search space was p = 40,
the dimension of the starting search space was ` = 5, and we restarted with q = 2
eigenvectors corresponding to the two smallest eigenvalues of the projected problem.
The results are shown in Table 4.1.

In Table 4.1, the size of the problem (n) is given in parentheses and ‘MatVecs’
denotes the number of matrix-vector products required. Here, A ∈ Rn×n, x, b ∈ Rn.
The only exception is problem parallax, for which A ∈ R26×n, b ∈ R26. For problem
heat, a parameter κ controls the degree of ill-posedness. The value κ = 5 yields a
mildly ill-posed problem whereas κ = 1 generates a severely ill-posed one.

The maximum dimension of the search space in the Nonlinear Arnoldi method
(p = 40) was reached only when solving the mildly ill-posed heat problem. In this
case, one restart was necessary. In all the regularization tests, the Nonlinear Arnoldi
method outperformed the Implicitly Restarted Lanczos Method in terms of matrix-
vector products and optimality of the trust-region solution measured by the quantity
‖H−λI+g‖
‖g‖ . Roughly speaking, the effort was reduced by a factor of 10 with respect to

the IRLM+H while the optimality level was higher. The IRLM+T needed even more
MatVecs than the IRLM+H to compute solutions with similar optimality levels.

4.2. Laplacian Problems. In these problems, the Hessian matrix was H =
L − 5I, with L the standard 2-D discrete Laplacian on the unit square based upon
a 5-point stencil with equally-spaced mesh points. We studied problems of size 324
and 1024. The vector g was randomly generated with entries uniformly distributed
on (0, 1). The trust-region radius was fixed at ∆ = 100. Problems with and without
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Table 4.1
Problems from Regularization Tools

Problem(Size) Eigensolver ‖x−xtrue‖
‖xtrue‖

‖H−λI+g‖
‖g‖

|‖x‖−∆|
∆ MatVecs

heat(300),κ = 1 IRLM+H 5.0e-02 5.3e-06 3.6e-03 554
IRLM+T 5.0e-02 3.1e-04 1.2e-03 869
NLArn 5.1e-02 3.1e-11 9.5e-03 33

heat(300),κ = 5 IRLM+H 3.3e-05 1.2e-07 1.2e-07 330
IRLM+T 3.3e-02 1.5e-12 2.9e-02 2231
NLArn 1.3e-03 3.8e-06 3.3e-06 64

heat(1000),κ = 1 IRLM+H 5.5e-02 7.0e-06 4.3e-03 552
IRLM+T 7.0e-02 7.3e-05 4.8e-03 1029
NLArn 1.2e-02 1.9e-09 3.0e-04 37

ilaplace(195) IRLM+H 2.8e-01 2.4e-04 3.2e-16 304
IRLM+T 1.5e-01 4.1e-08 1.4e-02 1909
NLArn 1.2e-01 1.1e-14 8.7e-03 22

parallax(300) IRLM+H - 1.4e-06 2.5e-03 335
IRLM+T - 8.4e-05 9.1e-03 953
NLArn - 3.4e-15 8.7e-03 23

phillips(300) IRLM+H 3.4e-02 1.2e-05 1.6e-04 213
IRLM+T 1.3e-02 2.2e-06 8.9e-04 393
NLArn 1.0e-02 1.6e-13 5.2e-04 26

phillips(1000) IRLM+H 1.0e-02 1.4e-06 4.5e-04 252
IRLM+T 1.4e-02 3.5e-06 9.6e-04 393
NLArn 1.0e-02 2.1e-13 5.6e-04 26

shaw(300) IRLM+H 5.8e-02 7.2e-09 5.6e-03 247
IRLM+T 5.8e-02 7.2e-09 5.6e-03 873
NLArn 5.8e-02 5.3e-14 5.7e-03 17

shaw(1000) IRLM+H 8.4e-02 2.3e-09 9.9e-03 223
IRLM+T 8.4e-02 2.3e-09 9.9e-03 792
NLArn 5.9e-02 2.2e-13 5.8e-03 17

hard case were studied. To generate the hard case, the vector g was orthogonalized
against the eigenvector q1 corresponding to the smallest eigenvalue of H. Hence, the
easy case was present when g was not orthogonalized against q1. A noise vector of
norm 10−8 was added to g.

The LSTRS parameter max eigentol = 0.02 was used in all experiments. For
n = 324, epsilon HC = 1e-5 and epsilon Delta = 1e-5 were used. For n = 1024,
the parameters were epsilon Delta = 1e-5 and epsilon HC = 1e-11 in the easy
case, and epsilon Delta = epsilon HC = 1e-11 in the hard case, cf. choices in [15].
The initial vector for the first call to the IRLM was v0 = (1, . . . , 1)T /

√
n+ 1 and the

total number of vectors was fixed at 10. For NLArn, p = 40, ` = 5, q = 2 were used
in the easy case. In the hard case, p = 40, ` = 20, q = 11 were used.

Average results for ten related problems, differing only in the vector g, are shown
in Table 4.2. The quantity |λ∗ − d1| is a measure of how exactly the hard case was
hit. In the easy case, this value is not meaningful. In the hard case, λ∗ = δ1 and
therefore, the exact value should be zero.

In the easy case, Nonlinear Arnoldi required about one third of the average num-
8



Table 4.2
The 2-D discrete Laplacian

Problem(Size) Eigensolver ‖H−λI+g‖
‖g‖

|‖x‖−∆|
∆ |λ∗ − d1| MatVecs

Easy case(324) IRLM 3.9e-02 4.7e-16 - 140
NLArn 6.7e-04 9.5e-07 - 38

Easy case(1024) IRLM 2.3e-06 1.3e-06 - 127
NLArn 3.7e-04 2.3e-06 - 36

Hard case(324) IRLM 4.9e-02 5.4e-16 7.8e-02 161
NLArn 5.4e-05 1.9e-07 4.6e-07 97

Hard case(1024) IRLM 6.5e-06 7.7e-16 7.2e-03 256
NLArn 2.3e-02 4.8e-16 2.7e-06 180

ber of matrix-vector products required by the IRLM. In the hard case, savings of
roughly 30% in the number of matrix-vector products were obtained with Nonlinear
Arnoldi. For NLArn, 2-4 restarts were necessary in the hard case and none in the
easy case. Another interesting point is the accuracy of λ∗ in the hard case. NLArn
determines λ∗ much more accurately than the IRLM.

4.3. UDUT family. In these problems, the matrix H was of the form H =
UDUT with D a diagonal matrix with elements d1, . . . , dn, and U = I − 2uuT with
uTu = 1. The elements of D were randomly generated with a uniform distribution
on (−5, 5), then sorted in nondecreasing order and d1 was set to −5. Both vectors u
and g were randomly generated with entries selected from a uniform distribution on
(−0.5, 0.5). The vector u was normalized to have unit length. We studied problems
of order 300 and 1000.

The eigenvectors of H are of the form qi = ei − 2uui, i = 1, . . . , n, with ei the
ith canonical vector and ui the ith component of the vector u. The vector g was
orthogonalized against q1 = e1 − 2uu1, and a noise vector was added to g. Finally, g
was normalized to have unit norm. The noise vectors had norms 10−2 and 10−8 for
the easy and hard case, respectively. We computed xmin = ‖(H − d1I)†g‖,∆min =
‖xmin‖, and then set ∆ = 0.1∆min for the easy case and ∆ = 5∆min for the hard
case. One fact makes this problem extremely difficult to solve: typically, xmin is
almost orthogonal to q1 but has huge components γi in the directions qi, i = 2, 3, 4, 5
and only very small components in eigendirections corresponding to large eigenvalues
of H. To construct an appropriate solution in the hard case, the vectors(

0
q1

)
and

(
1

xmin

)
≈
(

1∑5
i=2 γiqi

)
have to be properly separated. This is a highly demanding task since the vectors qi
correspond to the same cluster around δ1 = −5.

In all experiments, the parameters epsilon Delta = 1e-4, epsilon HC = 1e-10
and the initial guess delta U = -4.5 were used. In the easy case, max eigentol =
0.2 and α(0) = δU . In the hard case, max eigentol = 0.03 and α(0) =’min’. These
choices are the same as in [15].

The initial vector for the first call to the IRLM was v0 = (1, . . . , 1)T /
√
n+ 1. The

total number of vectors was fixed at 10 in the easy case and at 24 in the hard case. For
NLArn, p = 40, ` = 5, q = 2 were used in the easy case. In the hard case, the number
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of vectors kept in case of a restart was increased to q = 20 and the starting search
space was improved by setting ` = 35. The maximum dimension of the search space
was p = 40. Average results for ten related problems, differing only in the vector g,
are shown in Table 4.3.

Table 4.3
The UDUT family

Problem(Size) Eigensolver ‖H−λI+g‖
‖g‖

|‖x‖−∆|
∆ |λ∗ − d1| MatVecs

Easy case(300) IRLM 5.6e-07 2.5e-05 - 103
NLArn 2.8e-06 2.5e-05 - 39

Easy case(1000) IRLM 3.0e-06 1.1e-05 - 90
NLArn 1.8e-06 1.2e-05 - 38

Hard case(300) IRLM 7.0e-06 8.7e-06 1.8e-03 755
NLArn 2.2e-08 1.9e-05 1.8e-03 224

Hard case(1000) IRLM 9.7e-06 2.1e-05 2.1e-04 954
NLArn 4.7e-07 2.9e-05 2.4e-04 278

We can see in Table 4.3 that the IRLM required about three times the number
of matrix-vector products required by NLArn.

5. Conclusions. A suitable algorithm for solving the Large-Scale Trust-Region
Subproblem is the LSTRS method. The main computation in LSTRS is the solution
of a sequence of eigenvalue problems. Since by construction of the algorithm this
sequence is convergent, it is highly advantageous to use the information gathered while
solving one eigenproblem in the solution of the next. The Nonlinear Arnoldi method
can efficiently use all previously-obtained information. In all our experiments, using
the Nonlinear Arnoldi method instead of the implicitly restarted Lanczos method
significantly reduced the computational cost.
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