Accelerating the LSTRS Algorithm

Date
2009-07
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

In a recent paper [Rojas, Santos, Sorensen: ACM ToMS 34 (2008), Article 11] an efficient method for solvingthe Large-Scale Trust-Region Subproblem was suggested which is based on recasting it in terms of a parameter dependent eigenvalue problem and adjusting the parameter iteratively. The essential work at each iteration is the solution of an eigenvalue problem for the smallest eigenvalue of the Hessian matrix (or two smallest eigenvalues in the potential hard case) and associated eigenvector(s). Replacing the implicitly restarted Lanczos method in the original paper with the Nonlinear Arnoldi method makes it possible to recycle most of the work from previous iterations which can substantially accelerate LSTRS.

Description
Advisor
Degree
Type
Technical report
Keywords
Citation

Lampe, J., Rojas, M., Sorensen, D.C., et al.. "Accelerating the LSTRS Algorithm." (2009) https://hdl.handle.net/1911/102128.

Has part(s)
Forms part of
Published Version
Rights
Link to license
Citable link to this page