Revealing the Dual-Layered Solid Electrolyte Interphase on Lithium Metal Anodes via Cryogenic Electron Microscopy

dc.citation.firstpage2193en_US
dc.citation.issueNumber5en_US
dc.citation.journalTitleACS Energy Lettersen_US
dc.citation.lastpage2200en_US
dc.citation.volumeNumber8en_US
dc.contributor.authorWi, Tae-Ungen_US
dc.contributor.authorPark, Sung Oen_US
dc.contributor.authorYeom, Su Jeongen_US
dc.contributor.authorKim, Min-Hoen_US
dc.contributor.authorKristanto, Imanuelen_US
dc.contributor.authorWang, Haotianen_US
dc.contributor.authorKwak, Sang Kyuen_US
dc.contributor.authorLee, Hyun-Wooken_US
dc.date.accessioned2023-07-21T16:13:45Zen_US
dc.date.available2023-07-21T16:13:45Zen_US
dc.date.issued2023en_US
dc.description.abstractIt is crucial to comprehend the effect of the solid electrolyte interphase (SEI) on battery performance to develop stable Li metal batteries. Nonetheless, the exact nanostructure and working mechanisms of the SEI remain obscure. Here, we have investigated the relationship between electrolyte components and the structural configuration of interfacial layers using an optimized cryogenic transmission electron microscopy (Cryo-TEM) analysis and theoretical calculation. We revealed a unique dual-layered inorganic-rich nanostructure, in contrast to the widely known simple specific component-rich SEI layers. The origin of stable Li cycling is closely related to the Li-ion diffusion mechanism via diverse crystalline grains and numerous grain boundaries in the fine crystalline-rich SEI layer. The results can elucidate a particular issue pertaining to the chemical structure of SEI layers that can induce uniform Li diffusion and rapid Li-ion conduction on Li metal anodes, developing stable Li metal batteries.en_US
dc.identifier.citationWi, Tae-Ung, Park, Sung O, Yeom, Su Jeong, et al.. "Revealing the Dual-Layered Solid Electrolyte Interphase on Lithium Metal Anodes via Cryogenic Electron Microscopy." <i>ACS Energy Letters,</i> 8, no. 5 (2023) American Chemical Society: 2193-2200. https://doi.org/10.1021/acsenergylett.3c00505.en_US
dc.identifier.digitalacsenergylett-3c00505en_US
dc.identifier.doihttps://doi.org/10.1021/acsenergylett.3c00505en_US
dc.identifier.urihttps://hdl.handle.net/1911/114982en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND) license.  Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.titleRevealing the Dual-Layered Solid Electrolyte Interphase on Lithium Metal Anodes via Cryogenic Electron Microscopyen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acsenergylett-3c00505.pdf
Size:
11.31 MB
Format:
Adobe Portable Document Format