Chemical and Biomolecular Engineering Publications
Permanent URI for this collection
Browse
Recent Submissions
Now showing 1 - 20 of 296
Item PFAS occurrence and distribution in yard waste compost indicate potential volatile loss, downward migration, and transformation(Royal Society of Chemistry, 2024) Saha, Biraj; Ateia, Mohamed; Fernando, Sujan; Xu, Jiale; DeSutter, Thomas; Iskander, Syeed MdWe discovered high concentrations of PFAS (18.53 ± 1.5 μg kg−1) in yard waste compost, a compost type widely acceptable to the public. Seventeen out of forty targeted PFAS, belonging to six PFAS classes were detected in yard waste compost, with PFCAs (13.51 ± 0.99 μg kg−1) and PFSAs (4.13 ± 0.19 μg kg−1) being the dominant classes, comprising approximately 72.5% and 22.1% of the total measured PFAS. Both short-chain PFAS, such as PFBA, PFHxA, and PFBS, and long-chain PFAS, such as PFOA and PFOS, were prevalent in all the tested yard waste compost samples. We also discovered the co-occurrence of PFAS with low-density polyethylene (LDPE) and polyethylene terephthalate (PET) plastics. Total PFAS concentrations in LDPE and PET separated from incoming yard waste were 7.41 ± 0.41 μg kg−1 and 1.35 ± 0.1 μg kg−1, which increased to 8.66 ± 0.81 μg kg−1 in LDPE and 5.44 ± 0.56 μg kg−1 in PET separated from compost. An idle mature compost pile revealed a clear vertical distribution of PFAS, with the total PFAS concentrations at the surface level approximately 58.9–63.2% lower than the 2 ft level. This difference might be attributed to the volatile loss of short-chain PFCAs, PFAS's downward movement with moisture, and aerobic transformations of precursor PFAS at the surface.Item Electrothermal mineralization of per- and polyfluoroalkyl substances for soil remediation(Springer Nature, 2024) Cheng, Yi; Deng, Bing; Scotland, Phelecia; Eddy, Lucas; Hassan, Arman; Wang, Bo; Silva, Karla J.; Li, Bowen; Wyss, Kevin M.; Ucak-Astarlioglu, Mine G.; Chen, Jinhang; Liu, Qiming; Si, Tengda; Xu, Shichen; Gao, Xiaodong; JeBailey, Khalil; Jana, Debadrita; Torres, Mark Albert; Wong, Michael S.; Yakobson, Boris I.; Griggs, Christopher; McCary, Matthew A.; Zhao, Yufeng; Tour, James M.Per- and polyfluoroalkyl substances (PFAS) are persistent and bioaccumulative pollutants that can easily accumulate in soil, posing a threat to environment and human health. Current PFAS degradation processes often suffer from low efficiency, high energy and water consumption, or lack of generality. Here, we develop a rapid electrothermal mineralization (REM) process to remediate PFAS-contaminated soil. With environmentally compatible biochar as the conductive additive, the soil temperature increases to >1000 °C within seconds by current pulse input, converting PFAS to calcium fluoride with inherent calcium compounds in soil. This process is applicable for remediating various PFAS contaminants in soil, with high removal efficiencies ( >99%) and mineralization ratios ( >90%). While retaining soil particle size, composition, water infiltration rate, and cation exchange capacity, REM facilitates an increase of exchangeable nutrient supply and arthropod survival in soil, rendering it superior to the time-consuming calcination approach that severely degrades soil properties. REM is scaled up to remediate soil at two kilograms per batch and promising for large-scale, on-site soil remediation. Life-cycle assessment and techno-economic analysis demonstrate REM as an environmentally friendly and economic process, with a significant reduction of energy consumption, greenhouse gas emission, water consumption, and operation cost, when compared to existing soil remediation practices.Item Challenges in photocatalysis using covalent organic frameworks(IOP Publishing, 2024) Jiang, Shu-Yan; Senftle, Thomas P.; Verduzco, Rafael; NanoEnabled Water Treatment CenterPhotocatalysis is an attractive, energy-efficient technology for organic transformations, polymer synthesis, and degradation of environmental pollutants. There is a need for new photocatalysts stable in different media and that can be tailored for specific applications. Covalent organic frameworks (COF) are crystalline, nanoporous materials with π-conjugated backbone monomers, representing versatile platforms as heterogeneous, metal-free photocatalysts. The backbone structure can be tailored to achieve desired photocatalytic properties, side-chains can mediate adsorption, and the nanoporous structure provides large surface area for molecular adsorption. While these properties make COFs attractive as photocatalysts, several fundamental questions remain regarding mechanisms for different photocatalytic transformations, reactant transport into porous COF structures, and both structural and chemical stability in various environments. In this perspective, we provide a brief overview of COF photocatalysts and identify challenges that should be addressed in future research seeking to employ COFs as photocatalysts. We close with an outlook and perspective on future research directions in the area of COF photocatalysts.Item Hydrogen Peroxide Electrosynthesis in a Strong Acidic Environment Using Cationic Surfactants(American Chemical Society, 2024) Adler, Zachary; Zhang, Xiao; Feng, Guangxia; Shi, Yaping; Zhu, Peng; Xia, Yang; Shan, Xiaonan; Wang, HaotianThe two-electron oxygen reduction reaction (2e–-ORR) can be exploited for green production of hydrogen peroxide (H2O2), but it still suffers from low selectivity in an acidic electrolyte when using non-noble metal catalysts. Here, inspired by biology, we demonstrate a strategy that exploits the micellization of surfactant molecules to promote the H2O2 selectivity of a low-cost carbon black catalyst in strong acid electrolytes. The surfactants near the electrode surface increase the oxygen solubility and transportation, and they provide a shielding effect that displaces protons from the electric double layer (EDL). Compared with the case of a pure acidic electrolyte, we find that, when a small number of surfactant molecules were added to the acid, the H2O2 Faradaic efficiency (FE) was improved from 12% to 95% H2O2 under 200 mA cm–2, suggesting an 8-fold improvement. Our in situ surface enhanced Raman spectroscopy (SERS) and optical microscopy (OM) studies suggest that, while the added surfactant reduces the electrode’s hydrophobicity, its micelle formation could promote the O2 gas transport and its hydrophobic tail could displace local protons under applied negative potentials during catalysis, which are responsible for the improved H2O2 selectivity in strong acids.Item Ultra-high capacity, multifunctional nanoscale sorbents for PFOA and PFOS treatment(Springer Nature, 2023) Lee, Junseok; Kim, Changwoo; Liu, Chen; Wong, Michael S.; Cápiro, Natalie L.; Pennell, Kurt D.; Fortner, John D.Here, we describe surface functionalized, superparamagnetic iron oxide nanocrystals (IONCs) for ultra-high PFAS sorption and precise, low energy (magnetic) separation, considering perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). As a function of surface coating, sorption capacities described are considerably higher than previous studies using activated carbon, polymers, and unmodified metal/metal oxides, among others. In particular, positively charged polyethyleneimine (PEI) coated IONCs demonstrate extreme sorption capacities for both PFOA and PFOS due to electrostatic and hydrophobic interactions, along with high polymer grafting densities, while remaining stable in water, thus maintaining available surface area. Further, through a newly developed method using a quart crystal microbalance with dissipation (QCM-D), we present real-time, interfacial observations (e.g., sorption kinetics). Through this method, we explore underpinning mechanism(s) for differential PFAS (PFOA vs PFOS) sorption behavior(s), demonstrating that PFAS functional head group strongly influence molecular orientation on/at the sorbent interface. The effects of water chemistry, including pH, ionic composition of water, and natural organic matter on sorption behavior are also evaluated and along with material (treatment) demonstration via bench-scale column studies.Item Engineering chirality at wafer scale with ordered carbon nanotube architectures(Springer Nature, 2023) Doumani, Jacques; Lou, Minhan; Dewey, Oliver; Hong, Nina; Fan, Jichao; Baydin, Andrey; Zahn, Keshav; Yomogida, Yohei; Yanagi, Kazuhiro; Pasquali, Matteo; Saito, Riichiro; Kono, Junichiro; Gao, Weilu; Carbon Hub; Smalley-Curl InstituteCreating artificial matter with controllable chirality in a simple and scalable manner brings new opportunities to diverse areas. Here we show two such methods based on controlled vacuum filtration - twist stacking and mechanical rotation - for fabricating wafer-scale chiral architectures of ordered carbon nanotubes (CNTs) with tunable and large circular dichroism (CD). By controlling the stacking angle and handedness in the twist-stacking approach, we maximize the CD response and achieve a high deep-ultraviolet ellipticity of 40 ± 1 mdeg nm−1. Our theoretical simulations using the transfer matrix method reproduce the experimentally observed CD spectra and further predict that an optimized film of twist-stacked CNTs can exhibit an ellipticity as high as 150 mdeg nm−1, corresponding to a g factor of 0.22. Furthermore, the mechanical rotation method not only accelerates the fabrication of twisted structures but also produces both chiralities simultaneously in a single sample, in a single run, and in a controllable manner. The created wafer-scale objects represent an alternative type of synthetic chiral matter consisting of ordered quantum wires whose macroscopic properties are governed by nanoscopic electronic signatures and can be used to explore chiral phenomena and develop chiral photonic and optoelectronic devices.Item The energetics and evolution of oxidoreductases in deep time(Wiley, 2024) McGuinness, Kenneth N.; Fehon, Nolan; Feehan, Ryan; Miller, Michelle; Mutter, Andrew C.; Rybak, Laryssa A.; Nam, Justin; AbuSalim, Jenna E.; Atkinson, Joshua T.; Heidari, Hirbod; Losada, Natalie; Kim, J. Dongun; Koder, Ronald L.; Lu, Yi; Silberg, Jonathan J.; Slusky, Joanna S. G.; Falkowski, Paul G.; Nanda, VikasThe core metabolic reactions of life drive electrons through a class of redox protein enzymes, the oxidoreductases. The energetics of electron flow is determined by the redox potentials of organic and inorganic cofactors as tuned by the protein environment. Understanding how protein structure affects oxidation–reduction energetics is crucial for studying metabolism, creating bioelectronic systems, and tracing the history of biological energy utilization on Earth. We constructed ProtReDox (https://protein-redox-potential.web.app), a manually curated database of experimentally determined redox potentials. With over 500 measurements, we can begin to identify how proteins modulate oxidation–reduction energetics across the tree of life. By mapping redox potentials onto networks of oxidoreductase fold evolution, we can infer the evolution of electron transfer energetics over deep time. ProtReDox is designed to include user-contributed submissions with the intention of making it a valuable resource for researchers in this field.Item Niobium Oxide Photocatalytically Oxidizes Ammonia in Water at Ambient Conditions(SciELO, 2024) Elias, Welman; Clark, Chelsea; Heck, Kimberly; Arredondo, Jacob; Wang, Bo; Toro, Andras; Kürtib, László; Wong, Michael; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water TreatmentAmmonia contamination in water is a significant environmental issue since it is toxic and leads to eutrophication. Photocatalysis has been investigated as a strategy for ammonia degradation but can potentially form toxic nitrite (NO2–) and nitrate (NO3–) byproducts. This work reports on the ability of niobium oxide (Nb2O5) to photocatalytically oxidize aqueous-phase ammonia (NH3). Whereas as-synthesized Nb2O5 showed little catalytic activity (< 1% NH3 conversion after 6 h of UV-C irradiation, at room temperature and atmospheric pressure, and under O2 headspace), Nb2O5 treated in basic solution (OH-Nb2O5) was able to photocatalytically degrade NH3 at ca. 9% conversion after six hours, with ca. 70% selectivity to the desired N2, with a first-order rate constant of ca. 12 times higher than the as synthesize catalyst (1.6 × 10–3 min–1 vs. 2.0 × 10–2 min–1). Raman spectroscopic analysis indicated the presence of terminal Nb=O species after base treatment of Nb2O5, implicating them as catalytically active sites. These results underscore how a simple structural modification can significantly affect photocatalytic activity for aqueous ammonia oxidation.Item Complete defluorination of per- and polyfluoroalkyl substances — dream or reality?(Elsevier, 2023) Arana Juve, Jan-Max; Wang, Bo; Wong, Michael S.; Ateia, Mohammed; Wei, Zongsu; The Catalysis and Nanomaterials LaboratoryThe consensus of removing per- and polyfluoroalkyl substances (PFAS) from the environment is widely recognized and enlightened by the near-zero standards released from the U.S. Environmental Protection Agency in 2023. The only way to achieve the goal of zero fluoro-pollution is to fully defluorinate or mineralize PFAS, but current technologies only partially defluorinate a limited number of PFAS, which can lead to the creation of potentially more toxic short-chain intermediates. Therefore, we discuss herein the need to broaden the scope of tested PFAS, summarize the state-of-the-art degradation technologies, and provide perspectives to achieve complete defluorination. Besides fundamental knowledge gaps in defluorination reactions, technological gaps in the aspects of water matrix effects, pilot tests, and cost analysis also limit the application and comparison of different treatment technologies. This work would shed light on further research to find solutions in the complete defluorination of PFAS.Item Application of magnetic nanoparticles as demulsifiers for surfactant-enhanced oil recovery(Wiley, 2023) Zhang, Leilei; Bai, Chutian; Zhang, Zhuqing; Wang, Xinglin; Nguyen, Thao Vy; Vavra, Eric; Puerto, Maura; Hirasaki, George J.; Biswal, Sibani LisaNonionic surfactants are increasingly being applied in oil recovery processes due to their stability and low adsorption onto mineral surfaces. However, these surfactants lead to the production of emulsified oil that is extremely stable and difficult to separate by conventional methods. This research characterizes the stability of crude oil mixed with a nonionic surfactant, L24–22, in a brine solution. When subjected to gravity separation, a middle oil-rich and bottom water-rich emulsion are generated for various water–oil ratios. Thermal treatments can effectively break oil-rich emulsions, but the bottom water layer remains contaminated with micron-sized crude oil droplets. A magnetic nanoparticle treatment is shown to demulsify the crude oil emulsions, dropping the total organic carbon (TOC) in the water layer from 1470 to 30 ppm.Item Prelithiation Effects in Enhancing Silicon-Based Anodes for Full-Cell Lithium-Ion Batteries Using Stabilized Lithium Metal Particles(American Chemical Society, 2023) Nguyen, Quan Anh; Haridas, Anulekha K.; Terlier, Tanguy; Biswal, Sibani LisaSilicon (Si) has been considered as one of the most promising replacements for graphite anodes in next-generation lithium-ion batteries due to its superior specific capacity. However, the irreversible consumption of lithium (Li) ions in Si-based anodes, which is associated with a large volume expansion upon lithiation and the continuous formation of the solid electrolyte interphase (SEI), is especially detrimental to full-cell batteries, whose Li-ion reserve is limited. This study demonstrates the application of stabilized lithium metal particles (SLMPs) as a prelithiation method for Si anodes that can be readily incorporated into large-scale industrial battery manufacturing. Particularly, a surfactant-stabilized SLMP dispersion was designed to be spray-coated onto prefabricated Si composite anodes, forming a uniformly distributed and well-adhered SLMP layer for in situ prelithiation. In full-cells with lithium iron phosphate (LFP) cathodes, the Si-based anodes demonstrated an improved 1st cycle Coulombic efficiency and cycle life with SLMP prelithiation using capacity-control cycling. However, when cycling over the full potential range, prelithiation with high SLMP loading was found to initially increase battery capacity while inducing accelerated fading in later cycles. This phenomenon was caused by Li trapping in the Li–Si alloy associated with higher SLMP-enabled Li diffusion kinetics. Additionally, cycled Si anodes from full-cells were also examined by surface analysis techniques, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), demonstrating SLMP effects in modifying the SEI by increasing the inorganic content, particularly LiF, which had been widely credited with improving SEI morphology and Li-ion diffusion through the interphase. Our findings provide valuable insights into the design of prelithiation and cycling strategies for high-capacity Si-based full-cell batteries to utilize the benefits of SLMP while avoiding the Li trapping phenomenon.Item Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers(Springer Nature, 2023) Zhu, Dongyang; Zhu, Yifan; Chen, Yu; Yan, Qianqian; Wu, Han; Liu, Chun-Yen; Wang, Xu; Alemany, Lawrence B.; Gao, Guanhui; Senftle, Thomas P.; Peng, Yongwu; Wu, Xiaowei; Verduzco, RafaelThree-dimensional (3D) covalent organic frameworks (COFs) possess higher surface areas, more abundant pore channels, and lower density compared to their two-dimensional counterparts which makes the development of 3D COFs interesting from a fundamental and practical point of view. However, the construction of highly crystalline 3D COF remains challenging. At the same time, the choice of topologies in 3D COFs is limited by the crystallization problem, the lack of availability of suitable building blocks with appropriate reactivity and symmetries, and the difficulties in crystalline structure determination. Herein, we report two highly crystalline 3D COFs with pto and mhq-z topologies designed by rationally selecting rectangular-planar and trigonal-planar building blocks with appropriate conformational strains. The pto 3D COFs show a large pore size of 46 Å with an extremely low calculated density. The mhq-z net topology is solely constructed from totally face-enclosed organic polyhedra displaying a precise uniform micropore size of 1.0 nm. The 3D COFs show a high CO2 adsorption capacity at room temperature and can potentially serve as promising carbon capture adsorbents. This work expands the choice of accessible 3D COF topologies, enriching the structural versatility of COFs.Item Revealing the Dual-Layered Solid Electrolyte Interphase on Lithium Metal Anodes via Cryogenic Electron Microscopy(American Chemical Society, 2023) Wi, Tae-Ung; Park, Sung O; Yeom, Su Jeong; Kim, Min-Ho; Kristanto, Imanuel; Wang, Haotian; Kwak, Sang Kyu; Lee, Hyun-WookIt is crucial to comprehend the effect of the solid electrolyte interphase (SEI) on battery performance to develop stable Li metal batteries. Nonetheless, the exact nanostructure and working mechanisms of the SEI remain obscure. Here, we have investigated the relationship between electrolyte components and the structural configuration of interfacial layers using an optimized cryogenic transmission electron microscopy (Cryo-TEM) analysis and theoretical calculation. We revealed a unique dual-layered inorganic-rich nanostructure, in contrast to the widely known simple specific component-rich SEI layers. The origin of stable Li cycling is closely related to the Li-ion diffusion mechanism via diverse crystalline grains and numerous grain boundaries in the fine crystalline-rich SEI layer. The results can elucidate a particular issue pertaining to the chemical structure of SEI layers that can induce uniform Li diffusion and rapid Li-ion conduction on Li metal anodes, developing stable Li metal batteries.Item High Strength Titanium with Fibrous Grain for Advanced Bone Regeneration(Wiley, 2023) Wang, Ruohan; Wang, Mingsai; Jin, Rongrong; Wang, Yanfei; Yi, Min; Li, Qinye; Li, Juan; Zhang, Kai; Sun, Chenghua; Nie, Yu; Huang, Chongxiang; Mikos, Antonios G.; Zhang, XingdongPure titanium is widely used in clinical implants, but its bioinert properties (poor strength and mediocre effect on bone healing) limit its use under load-bearing conditions. Modeling on the structure of collagen fibrils and specific nanocrystal plane arrangement of hydroxyapatite in the natural bone, a new type of titanium (Ti) with a highly aligned fibrous-grained (FG) microstructure is constructed. The improved attributes of FG Ti include high strength (≈950 MPa), outstanding affinity to new bone growth, and tight bone-implant contact. The bone-mimicking fibrous grains induce an aligned surface topological structure conducive to forming close contact with osteoblasts and promotes the expression of osteogenic genes. Concurrently, the predominant Ti(0002) crystal plane of FG Ti induces the formation of hydrophilic anatase titanium oxide layers, which accelerate biomineralization. In conclusion, this bioinspired FG Ti not only proves to show mechanical and bone-regenerative improvements but it also provides a new strategy for the future design of metallic biomaterials.Item Design and fabrication of a Preformed Thixotropic-Viscoelastic Nanocomposite hydrogel system (PNCH) for controlling sand production in reservoirs(Elsevier, 2023) Saghandali, Farzin; Baghban Salehi, Mahsa; Taghikhani, VahidIn this study, the performance of preformed dual crosslinked nanocomposite hydrogels (PNCH) consisting of acrylamide, 2-acrylamide-2-methylpropane sulfonic acid, maleic acid, and acrylic acid in sand control was investigated. Also, the effects of three nanoparticles (NPs) of iron (PNCH1), silicon (PNCH2), and bentonite (PNCH3) on the PNCH structure were studied. The morphology, equilibrium swelling ratio (ESR), rheology, thermal strength, zeta potential, and compressive strength were experimentally analyzed. According to the XRD results, the NPs were completely dispersed in all three samples. The results of SEM and EDS tests confirmed the presence of NPs within the PNCHs with a dense, homogeneous, and porous structure. The results of the ESR at distilled and formation water at ambient temperature for PNCHs (1), (2), and (3) were (13.9,4.55), (15.45, 6.35), and (12.9, 4.8), also at reservoir temperatures ESR results were reported (78, 17.5), (89, 13), and (70,12.9) respectively. From the TGA results, structure destruction of PNCHs starts at 222, 225, and 202 °C respectively so the addition of 1 wt% of NPs increased the structure destruction from nearly 80 °C to more than 200 °C. Based on the results of the strain sweep test, structures of PNCHs can cause viscoelastic behavior with the maximum elastic modulus of 29,000, 8430, and 10,800, and critical strain of (10%, 19.3%, and 10.8%) respectively. The loop test results confirmed the time-dependent viscoelastic properties of thixotropic in all structures. Finally, in compressive strength test revealed that adding 0.5 pore volume of 1 wt% of PNCH into the sandpack increased its strength by 980%.Item Nucleosome Breathing Facilitates the Search for Hidden DNA Sites by Pioneer Transcription Factors(American Chemical Society, 2023) Mondal, Anupam; Felipe, Cayke; Kolomeisky, Anatoly B.; Center for Theoretical Biological PhysicsTransfer of genetic information starts with transcription factors (TFs) binding to specific sites on DNA. But in living cells, DNA is mostly covered by nucleosomes. There are proteins, known as pioneer TFs, that can efficiently reach the DNA sites hidden by nucleosomes, although the underlying mechanisms are not understood. Using the recently proposed idea of interaction-compensation mechanism, we develop a stochastic model for the target search on DNA with nucleosome breathing. It is found that nucleosome breathing can significantly accelerate the search by pioneer TFs in comparison to situations without breathing. We argue that this is the result of the interaction-compensation mechanism that allows proteins to enter the inner nucleosome region through the outer DNA segment. It is suggested that nature optimized pioneer TFs to take advantage of nucleosome breathing. The presented theoretical picture provides a possible microscopic explanation for the successful invasion of nucleosome-buried genes.Item Theoretical understanding of evolutionary dynamics on inhomogeneous networks(IOP Publishing, 2023) Teimouri, Hamid; Khavas, Dorsa Sattari; Spaulding, Cade; Li, Christopher; Kolomeisky, Anatoly B.; Center for Theoretical Biological PhysicsEvolution is the main feature of all biological systems that allows populations to change their characteristics over successive generations. A powerful approach to understand evolutionary dynamics is to investigate fixation probabilities and fixation times of novel mutations on networks that mimic biological populations. It is now well established that the structure of such networks can have dramatic effects on evolutionary dynamics. In particular, there are population structures that might amplify the fixation probabilities while simultaneously delaying the fixation events. However, the microscopic origins of such complex evolutionary dynamics remain not well understood. We present here a theoretical investigation of the microscopic mechanisms of mutation fixation processes on inhomogeneous networks. It views evolutionary dynamics as a set of stochastic transitions between discrete states specified by different numbers of mutated cells. By specifically considering star networks, we obtain a comprehensive description of evolutionary dynamics. Our approach allows us to employ physics-inspired free-energy landscape arguments to explain the observed trends in fixation times and fixation probabilities, providing a better microscopic understanding of evolutionary dynamics in complex systems.Item Mesoscale Modeling of Distributed Water Systems Enables Policy Search(Wiley, 2023) Zhou, Xiangnan; Duenas-Osorio, Leonardo; Doss-Gollin, James; Liu, Lu; Stadler, Lauren; Li, Qilin; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water TreatmentIt is widely acknowledged that distributed water systems (DWSs), which integrate distributed water supply and treatment with existing centralized infrastructure, can mitigate challenges to water security from extreme events, climate change, and aged infrastructure. However, it is unclear which are beneficial DWS configurations, i.e., where and at what scale to implement distributed water supply. We develop a mesoscale representation model that approximates DWSs with reduced backbone networks to enable efficient system emulation while preserving key physical realism. Moreover, system emulation allows us to build a multiobjective optimization model for computational policy search that addresses energy utilization and economic impacts. We demonstrate our models on a hypothetical DWS with distributed direct potable reuse (DPR) based on the City of Houston's water and wastewater infrastructure. The backbone DWS with greater than 92% link and node reductions achieves satisfactory approximation of global flows and water pressures, to enable configuration optimization analysis. Results from the optimization model reveal case-specific as well as general opportunities, constraints, and their interactions for DPR allocation. Implementing DPR can be beneficial in areas with high energy intensities of water distribution, considerable local water demands, and commensurate wastewater reuse capacities. The mesoscale modeling approach and the multiobjective optimization model developed in this study can serve as practical decision-support tools for stakeholders to search for alternative DWS options in urban settings.Item Coiling of semiflexible paramagnetic colloidal chains(Royal Society of Chemistry, 2023) Spatafora-Salazar, Aldo; Kuei, Steve; Cunha, Lucas H.P.; Biswal, Sibani LisaSemiflexible filaments deform into a variety of configurations that dictate different phenomena manifesting at low Reynolds number. Harnessing the elasticity of these filaments to perform transport-related processes at the microfluidic scale requires structures that can be directly manipulated to attain controllable geometric features during their deformation. The configuration of semiflexible chains assembled from paramagnetic colloids can be readily controlled upon the application of external time-varying magnetic fields. In circularly rotating magnetic fields, these chains undergo coiling dynamics in which their ends close into loops that wrap inward, analogous to the curling of long nylon filaments under shear. The coiling is promising for the precise loading and targeted transport of small materials, however effective implementation requires an understanding of the role that field parameters and chain properties play on the coiling features. Here, we investigate the formation of coils in semiflexible paramagnetic chains using numerical simulations. We demonstrate that the size and shape of the initial coils are governed by the Mason and elastoviscous numbers, related to the field parameters and the chain bending stiffness. The size of the initial coil follows a nonmonotonic behavior with Mason number from which two regions are identified: (1) an elasticity-dependent nonlinear regime in which the coil size decreases with increasing field strength and for which loop shape tends to be circular, and (2) an elasticity-independent linear regime where the size increases with field strength and the shape become more elliptical. From the time scales associated to these regimes, we identify distinct coiling mechanisms for each case that relate the coiling dynamics to two other configurational dynamics of paramagnetic chains: wagging and folding behaviors.Item Impregnation of KOAc on PdAu/SiO2 causes Pd-acetate formation and metal restructuring(Royal Society of Chemistry, 2023) Jacobs, Hunter P.; Elias, Welman C.; Heck, Kimberly N.; Dean, David P.; Dodson, Justin J.; Zhang, Wenqing; Arredondo, Jacob H.; Breckner, Christian J.; Hong, Kiheon; Botello, Christopher R.; Chen, Laiyuan; Mueller, Sean G.; Alexander, Steven R.; Miller, Jeffrey T.; Wong, Michael S.Potassium-promoted, oxide-supported PdAu is catalytically active for the gas-phase acetoxylation of ethylene to form vinyl acetate monomer (VAM), in which the potassium improves long-term activity and VAM selectivity. The alkali metal is incorporated into the catalyst via wet impregnation of its salt solution, and it is generally assumed that this common catalyst preparation step has no effect on the catalyst structure. However, in this work, we report evidence to the contrary. We synthesized a silica-supported PdAu (PdAu/SiO2, 8 wt% Pd, 4 wt% Au) model catalyst containing Pd-rich PdAu alloy and pure Au phases. Impregnation with potassium acetate (KOAc) aqueous solution and subsequent drying did not cause XRD-detectible changes to the bimetal structure. However, DRIFTS indicated the presence of Pd3(OAc)6 species, which is correlated to up to 2% Pd loss after washing of the dried KOAc-promoted PdAu/SiO2. Carrying out the impregnation step with an AcOH-only solution and subsequent drying caused significant enlargement of the pure Au grain size and generated a smaller amount of Pd3(OAc)6. During co-impregnation of AcOH and KOAc, grain sizes were enlarged slightly, and substantial amounts of K2Pd2(OAc)6 and Pd3(OAc)6 were detected by DRIFTS and correlated to up to 32% Pd loss after washing. Synchrotron XAS analysis showed that approximately half the Pd atoms were oxidized, corroborating the presence of the Pd-acetate species. These results indicate wet-impregnation-induced metal leaching can occur and be substantial during catalyst preparation.