Engineering chirality at wafer scale with ordered carbon nanotube architectures

dc.citation.articleNumber7380en_US
dc.citation.journalTitleNature Communicationsen_US
dc.citation.volumeNumber14en_US
dc.contributor.authorDoumani, Jacquesen_US
dc.contributor.authorLou, Minhanen_US
dc.contributor.authorDewey, Oliveren_US
dc.contributor.authorHong, Ninaen_US
dc.contributor.authorFan, Jichaoen_US
dc.contributor.authorBaydin, Andreyen_US
dc.contributor.authorZahn, Keshaven_US
dc.contributor.authorYomogida, Yoheien_US
dc.contributor.authorYanagi, Kazuhiroen_US
dc.contributor.authorPasquali, Matteoen_US
dc.contributor.authorSaito, Riichiroen_US
dc.contributor.authorKono, Junichiroen_US
dc.contributor.authorGao, Weiluen_US
dc.contributor.orgCarbon Huben_US
dc.contributor.orgSmalley-Curl Instituteen_US
dc.date.accessioned2024-05-03T15:51:18Zen_US
dc.date.available2024-05-03T15:51:18Zen_US
dc.date.issued2023en_US
dc.description.abstractCreating artificial matter with controllable chirality in a simple and scalable manner brings new opportunities to diverse areas. Here we show two such methods based on controlled vacuum filtration - twist stacking and mechanical rotation - for fabricating wafer-scale chiral architectures of ordered carbon nanotubes (CNTs) with tunable and large circular dichroism (CD). By controlling the stacking angle and handedness in the twist-stacking approach, we maximize the CD response and achieve a high deep-ultraviolet ellipticity of 40 ± 1 mdeg nm−1. Our theoretical simulations using the transfer matrix method reproduce the experimentally observed CD spectra and further predict that an optimized film of twist-stacked CNTs can exhibit an ellipticity as high as 150 mdeg nm−1, corresponding to a g factor of 0.22. Furthermore, the mechanical rotation method not only accelerates the fabrication of twisted structures but also produces both chiralities simultaneously in a single sample, in a single run, and in a controllable manner. The created wafer-scale objects represent an alternative type of synthetic chiral matter consisting of ordered quantum wires whose macroscopic properties are governed by nanoscopic electronic signatures and can be used to explore chiral phenomena and develop chiral photonic and optoelectronic devices.en_US
dc.identifier.citationDoumani, J., Lou, M., Dewey, O., Hong, N., Fan, J., Baydin, A., Zahn, K., Yomogida, Y., Yanagi, K., Pasquali, M., Saito, R., Kono, J., & Gao, W. (2023). Engineering chirality at wafer scale with ordered carbon nanotube architectures. Nature Communications, 14(1), 7380. https://doi.org/10.1038/s41467-023-43199-xen_US
dc.identifier.digitals41467-023-43199-xen_US
dc.identifier.doihttps://doi.org/10.1038/s41467-023-43199-xen_US
dc.identifier.urihttps://hdl.handle.net/1911/115615en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleEngineering chirality at wafer scale with ordered carbon nanotube architecturesen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-023-43199-x.pdf
Size:
2.75 MB
Format:
Adobe Portable Document Format