Engineering chirality at wafer scale with ordered carbon nanotube architectures

dc.citation.articleNumber7380
dc.citation.journalTitleNature Communications
dc.citation.volumeNumber14
dc.contributor.authorDoumani, Jacques
dc.contributor.authorLou, Minhan
dc.contributor.authorDewey, Oliver
dc.contributor.authorHong, Nina
dc.contributor.authorFan, Jichao
dc.contributor.authorBaydin, Andrey
dc.contributor.authorZahn, Keshav
dc.contributor.authorYomogida, Yohei
dc.contributor.authorYanagi, Kazuhiro
dc.contributor.authorPasquali, Matteo
dc.contributor.authorSaito, Riichiro
dc.contributor.authorKono, Junichiro
dc.contributor.authorGao, Weilu
dc.contributor.orgCarbon Hub
dc.contributor.orgSmalley-Curl Institute
dc.date.accessioned2024-05-03T15:51:18Z
dc.date.available2024-05-03T15:51:18Z
dc.date.issued2023
dc.description.abstractCreating artificial matter with controllable chirality in a simple and scalable manner brings new opportunities to diverse areas. Here we show two such methods based on controlled vacuum filtration - twist stacking and mechanical rotation - for fabricating wafer-scale chiral architectures of ordered carbon nanotubes (CNTs) with tunable and large circular dichroism (CD). By controlling the stacking angle and handedness in the twist-stacking approach, we maximize the CD response and achieve a high deep-ultraviolet ellipticity of 40 ± 1 mdeg nm−1. Our theoretical simulations using the transfer matrix method reproduce the experimentally observed CD spectra and further predict that an optimized film of twist-stacked CNTs can exhibit an ellipticity as high as 150 mdeg nm−1, corresponding to a g factor of 0.22. Furthermore, the mechanical rotation method not only accelerates the fabrication of twisted structures but also produces both chiralities simultaneously in a single sample, in a single run, and in a controllable manner. The created wafer-scale objects represent an alternative type of synthetic chiral matter consisting of ordered quantum wires whose macroscopic properties are governed by nanoscopic electronic signatures and can be used to explore chiral phenomena and develop chiral photonic and optoelectronic devices.
dc.identifier.citationDoumani, J., Lou, M., Dewey, O., Hong, N., Fan, J., Baydin, A., Zahn, K., Yomogida, Y., Yanagi, K., Pasquali, M., Saito, R., Kono, J., & Gao, W. (2023). Engineering chirality at wafer scale with ordered carbon nanotube architectures. Nature Communications, 14(1), 7380. https://doi.org/10.1038/s41467-023-43199-x
dc.identifier.digitals41467-023-43199-x
dc.identifier.doihttps://doi.org/10.1038/s41467-023-43199-x
dc.identifier.urihttps://hdl.handle.net/1911/115615
dc.language.isoeng
dc.publisherSpringer Nature
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleEngineering chirality at wafer scale with ordered carbon nanotube architectures
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpublisher version
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-023-43199-x.pdf
Size:
2.75 MB
Format:
Adobe Portable Document Format