Topological Spin Excitations in Honeycomb Ferromagnet CrI3

Abstract

In two-dimensional honeycomb ferromagnets, bosonic magnon quasiparticles (spin waves) may either behave as massless Dirac fermions or form topologically protected edge states. The key ingredient defining their nature is the next-nearest-neighbor Dzyaloshinskii-Moriya interaction that breaks the inversion symmetry of the lattice and discriminates chirality of the associated spin-wave excitations. Using inelastic neutron scattering, we find that spin waves of the insulating honeycomb ferromagnet CrI3 (TC=61 K) have two distinctive bands of ferromagnetic excitations separated by a ∼4 meV gap at the Dirac points. These results can only be understood by considering a Heisenberg Hamiltonian with Dzyaloshinskii-Moriya interaction, thus providing experimental evidence that spin waves in CrI3 can have robust topological properties potentially useful for dissipationless spintronic applications.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Chen, Lebing, Chung, Jae-Ho, Gao, Bin, et al.. "Topological Spin Excitations in Honeycomb Ferromagnet CrI3." Physical Review X, 8, no. 4 (2018) American Physical Society: https://doi.org/10.1103/PhysRevX.8.041028.

Has part(s)
Forms part of
Rights
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Citable link to this page