Inelastic ion scattering from semiconductor surfaces

Date
2000
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Recent experimental investigations into charge transfer during ion/semiconductor surface collisions indicate dependence of the scattered ion's neutralization probability upon the target surface's local electronic environment along the scattered ion trajectory. This work presents qualitative modeling of these experiments demonstrating how the target surface's local electrostatic potential and charge density modify the scattered ion's neutralization rates. These models have been applied to Ne+ scattering and S- recoil from CdS {0001} and {0001¯} surfaces as well as Ne + scattering from intrinsic, n- and p-doped Si(100)-(2x1) surfaces. Correlation between electrostatic surface potential and ion neutralization probability has been shown for ion scattering from the CdS surfaces. Ne + neutralization during scattering from the Si(100)-(2x1) surface correlates to local surface charge density along the ion trajectory. Variations in ion neutralization rate for the intrinsic, n- and p-doped surfaces have been correlated to band bending at the Si surface.

Description
Degree
Master of Science
Type
Thesis
Keywords
Condensed matter physics
Citation

Wolfgang, John A.. "Inelastic ion scattering from semiconductor surfaces." (2000) Master’s Thesis, Rice University. https://hdl.handle.net/1911/17388.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page