Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi4I4

dc.citation.articleNumber031042
dc.citation.issueNumber3
dc.citation.journalTitlePhysical Review X
dc.citation.volumeNumber11
dc.contributor.authorHuang, Jianwei
dc.contributor.authorLi, Sheng
dc.contributor.authorYoon, Chiho
dc.contributor.authorOh, Ji Seop
dc.contributor.authorWu, Han
dc.contributor.authorLiu, Xiaoyuan
dc.contributor.authorDhale, Nikhil
dc.contributor.authorZhou, Yan-Feng
dc.contributor.authorGuo, Yucheng
dc.contributor.authorZhang, Yichen
dc.contributor.authorHashimoto, Makoto
dc.contributor.authorLu, Donghui
dc.contributor.authorDenlinger, Jonathan
dc.contributor.authorWang, Xiqu
dc.contributor.authorLau, Chun Ning
dc.contributor.authorBirgeneau, Robert J.
dc.contributor.authorZhang, Fan
dc.contributor.authorLv, Bing
dc.contributor.authorYi, Ming
dc.date.accessioned2021-09-21T15:37:41Z
dc.date.available2021-09-21T15:37:41Z
dc.date.issued2021
dc.description.abstractQuasi-one-dimensional (1D) materials provide a superior platform for characterizing and tuning topological phases for two reasons: (i) existence for multiple cleavable surfaces that enables better experimental identification of topological classification and (ii) stronger response to perturbations such as strain for tuning topological phases compared to higher dimensional crystal structures. In this paper, we present experimental evidence for a room-temperature topological phase transition in the quasi-1D material Bi4I4, mediated via a first-order structural transition between two distinct stacking orders of the weakly coupled chains. Using high-resolution angle-resolved photoemission spectroscopy on the two natural cleavable surfaces, we identify the high-temperature β phase to be the first weak topological insulator with two gapless Dirac cones on the (100) surface and no Dirac crossing on the (001) surface, while in the low-temperature α phase, the topological surface state on the (100) surface opens a gap, consistent with a recent theoretical prediction of a higher-order topological insulator beyond the scope of the established topological materials databases that hosts gapless hinge states. Our results not only identify a rare topological phase transition between first-order and second-order topological insulators but also establish a novel quasi-1D material platform for exploring unprecedented physics.
dc.identifier.citationHuang, Jianwei, Li, Sheng, Yoon, Chiho, et al.. "Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi4I4." <i>Physical Review X,</i> 11, no. 3 (2021) American Physical Society: https://doi.org/10.1103/PhysRevX.11.031042.
dc.identifier.digitalPhysRevX-11-031042
dc.identifier.doihttps://doi.org/10.1103/PhysRevX.11.031042
dc.identifier.urihttps://hdl.handle.net/1911/111374
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.rightsPublished by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleRoom-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi4I4
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpublisher version
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevX-11-031042.pdf
Size:
3 MB
Format:
Adobe Portable Document Format