Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi4I4

dc.citation.articleNumber031042en_US
dc.citation.issueNumber3en_US
dc.citation.journalTitlePhysical Review Xen_US
dc.citation.volumeNumber11en_US
dc.contributor.authorHuang, Jianweien_US
dc.contributor.authorLi, Shengen_US
dc.contributor.authorYoon, Chihoen_US
dc.contributor.authorOh, Ji Seopen_US
dc.contributor.authorWu, Hanen_US
dc.contributor.authorLiu, Xiaoyuanen_US
dc.contributor.authorDhale, Nikhilen_US
dc.contributor.authorZhou, Yan-Fengen_US
dc.contributor.authorGuo, Yuchengen_US
dc.contributor.authorZhang, Yichenen_US
dc.contributor.authorHashimoto, Makotoen_US
dc.contributor.authorLu, Donghuien_US
dc.contributor.authorDenlinger, Jonathanen_US
dc.contributor.authorWang, Xiquen_US
dc.contributor.authorLau, Chun Ningen_US
dc.contributor.authorBirgeneau, Robert J.en_US
dc.contributor.authorZhang, Fanen_US
dc.contributor.authorLv, Bingen_US
dc.contributor.authorYi, Mingen_US
dc.date.accessioned2021-09-21T15:37:41Zen_US
dc.date.available2021-09-21T15:37:41Zen_US
dc.date.issued2021en_US
dc.description.abstractQuasi-one-dimensional (1D) materials provide a superior platform for characterizing and tuning topological phases for two reasons: (i) existence for multiple cleavable surfaces that enables better experimental identification of topological classification and (ii) stronger response to perturbations such as strain for tuning topological phases compared to higher dimensional crystal structures. In this paper, we present experimental evidence for a room-temperature topological phase transition in the quasi-1D material Bi4I4, mediated via a first-order structural transition between two distinct stacking orders of the weakly coupled chains. Using high-resolution angle-resolved photoemission spectroscopy on the two natural cleavable surfaces, we identify the high-temperature β phase to be the first weak topological insulator with two gapless Dirac cones on the (100) surface and no Dirac crossing on the (001) surface, while in the low-temperature α phase, the topological surface state on the (100) surface opens a gap, consistent with a recent theoretical prediction of a higher-order topological insulator beyond the scope of the established topological materials databases that hosts gapless hinge states. Our results not only identify a rare topological phase transition between first-order and second-order topological insulators but also establish a novel quasi-1D material platform for exploring unprecedented physics.en_US
dc.identifier.citationHuang, Jianwei, Li, Sheng, Yoon, Chiho, et al.. "Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi4I4." <i>Physical Review X,</i> 11, no. 3 (2021) American Physical Society: https://doi.org/10.1103/PhysRevX.11.031042.en_US
dc.identifier.digitalPhysRevX-11-031042en_US
dc.identifier.doihttps://doi.org/10.1103/PhysRevX.11.031042en_US
dc.identifier.urihttps://hdl.handle.net/1911/111374en_US
dc.language.isoengen_US
dc.publisherAmerican Physical Societyen_US
dc.rightsPublished by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleRoom-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi4I4en_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevX-11-031042.pdf
Size:
3 MB
Format:
Adobe Portable Document Format