From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties

dc.citation.firstpagee1500988
dc.citation.issueNumber11
dc.citation.journalTitleScience Advances
dc.citation.volumeNumber1
dc.contributor.authorByers, Chad P.
dc.contributor.authorZhang, Hui
dc.contributor.authorSwearer, Dayne F.
dc.contributor.authorYorulmaz, Mustafa
dc.contributor.authorHoener, Benjamin S.
dc.contributor.authorHuang, Da
dc.contributor.authorHoggard, Anneli
dc.contributor.authorChang, Wei-Shun
dc.contributor.authorMulvaney, Paul
dc.contributor.authorRinge, Emilie
dc.contributor.authorHalas, Naomi J.
dc.contributor.authorNordlander, Peter
dc.contributor.authorLink, Stephan
dc.contributor.authorLandes, Christy F.
dc.date.accessioned2016-01-15T17:21:43Z
dc.date.available2016-01-15T17:21:43Z
dc.date.issued2015
dc.description.abstractThe optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications.
dc.identifier.citationByers, Chad P., Zhang, Hui, Swearer, Dayne F., et al.. "From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties." <i>Science Advances,</i> 1, no. 11 (2015) AAAS: e1500988. http://dx.doi.org/10.1126/sciadv.1500988.
dc.identifier.doihttp://dx.doi.org/10.1126/sciadv.1500988
dc.identifier.urihttps://hdl.handle.net/1911/87847
dc.language.isoeng
dc.publisherAAAS
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provide
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.keywordmaterials science
dc.subject.keywordNanoparticles
dc.subject.keywordoptical properties
dc.subject.keywordinterparticle gaps
dc.subject.keywordcharge transfer plasmon
dc.subject.keywordactive plasmonics
dc.titleFrom tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpublisher version
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
e1500988.full.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Description: