Rydberg blockade in a hot atomic beam

dc.citation.articleNumber42705en_US
dc.citation.issueNumber4en_US
dc.citation.journalTitlePhysical Review Aen_US
dc.citation.volumeNumber95en_US
dc.contributor.authorYoshida, S.en_US
dc.contributor.authorBurgdörfer, J.en_US
dc.contributor.authorZhang, X.en_US
dc.contributor.authorDunning, F.B.en_US
dc.date.accessioned2017-05-03T21:11:46Zen_US
dc.date.available2017-05-03T21:11:46Zen_US
dc.date.issued2017en_US
dc.description.abstractThe dipole blockade of very-high-n, n∼300, strontium 5snf1F3 Rydberg atoms in a hot atomic beam is studied. For such high n, the blockade radius can exceed the linear dimensions of the excitation volume. Rydberg atoms formed inside the excitation volume can, upon leaving the region, continue to suppress excitation until they have moved farther away than the blockade radius. Moreover, the high density of states originating from the many magnetic sublevels associated with the F states results in a small but finite probability of excitation of L=3n1F3 atom pairs at small internuclear separations below the blockade radius. We demonstrate that these effects can be distinguished from one another by the distinct features they imprint on the Mandel Q parameter as a function of the duration of the exciting laser.en_US
dc.identifier.citationYoshida, S., Burgdörfer, J., Zhang, X., et al.. "Rydberg blockade in a hot atomic beam." <i>Physical Review A,</i> 95, no. 4 (2017) American Physical Society: https://doi.org/10.1103/PhysRevA.95.042705.en_US
dc.identifier.doihttps://doi.org/10.1103/PhysRevA.95.042705en_US
dc.identifier.urihttps://hdl.handle.net/1911/94158en_US
dc.language.isoengen_US
dc.publisherAmerican Physical Societyen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.titleRydberg blockade in a hot atomic beamen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevA.95.042705.pdf
Size:
2.23 MB
Format:
Adobe Portable Document Format
Description: