Connecting the Sequence-Space of Bacterial Signaling Proteins to Phenotypes Using Coevolutionary Landscapes

dc.citation.firstpage3054en_US
dc.citation.issueNumber12en_US
dc.citation.journalTitleMolecular Biology and Evolutionen_US
dc.citation.lastpage3064en_US
dc.citation.volumeNumber33en_US
dc.contributor.authorCheng, R.R.en_US
dc.contributor.authorNordesjӧ, O.en_US
dc.contributor.authorHayes, R.L.en_US
dc.contributor.authorLevine, H.en_US
dc.contributor.authorFlores, S.C.en_US
dc.contributor.authorOnuchic, José Nelsonen_US
dc.contributor.authorMorcos, F.en_US
dc.contributor.orgCenter for Theoretical Biological Physicsen_US
dc.date.accessioned2017-05-05T19:00:53Zen_US
dc.date.available2017-05-05T19:00:53Zen_US
dc.date.issued2016en_US
dc.description.abstractTwo-component signaling (TCS) is the primary means by which bacteria sense and respond to the environment. TCS involves two partner proteins working in tandem, which interact to perform cellular functions whereas limiting interactions with non-partners (i.e., cross-talk). We construct a Potts model for TCS that can quantitatively predict how mutating amino acid identities affect the interaction between TCS partners and non-partners. The parameters of this model are inferred directly from protein sequence data. This approach drastically reduces the computational complexity of exploring the sequence-space of TCS proteins. As a stringent test, we compare its predictions to a recent comprehensive mutational study, which characterized the functionality of 204 mutational variants of the PhoQ kinase in Escherichia coli. We find that our best predictions accurately reproduce the amino acid combinations found in experiment, which enable functional signaling with its partner PhoP. These predictions demonstrate the evolutionary pressure to preserve the interaction between TCS partners as well as prevent unwanted cross-talk. Further, we calculate the mutational change in the binding affinity between PhoQ and PhoP, providing an estimate to the amount of destabilization needed to disrupt TCS.en_US
dc.identifier.citationCheng, R.R., Nordesjӧ, O., Hayes, R.L., et al.. "Connecting the Sequence-Space of Bacterial Signaling Proteins to Phenotypes Using Coevolutionary Landscapes." <i>Molecular Biology and Evolution,</i> 33, no. 12 (2016) Oxford University Press: 3054-3064. https://doi.org/10.1093/molbev/msw188.en_US
dc.identifier.doihttps://doi.org/10.1093/molbev/msw188en_US
dc.identifier.urihttps://hdl.handle.net/1911/94197en_US
dc.language.isoengen_US
dc.publisherOxford University Pressen_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.subject.keywordstatistical inferenceen_US
dc.subject.keywordmutational phenotypesen_US
dc.subject.keywordinteraction specificityen_US
dc.subject.keywordepistasisen_US
dc.subject.keywordfitness landscapeen_US
dc.subject.keywordbacterial signalingen_US
dc.titleConnecting the Sequence-Space of Bacterial Signaling Proteins to Phenotypes Using Coevolutionary Landscapesen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Connecting-Sequence-Space.pdf
Size:
776.36 KB
Format:
Adobe Portable Document Format
Description:
Article
Loading...
Thumbnail Image
Name:
msw188_Supp.pdf
Size:
3.29 MB
Format:
Adobe Portable Document Format
Description:
Supplementary Information