Electron doping evolution of the neutron spin resonance in NaFe1−xCoxAs


Neutron spin resonance, a collective magnetic excitation coupled to superconductivity, is one of the most prominent features shared by a broad family of unconventional superconductors including copper oxides, iron pnictides, and heavy fermions. In this paper, we study the doping evolution of the resonances in NaFe1−xCoxAs covering the entire superconducting dome. For the underdoped compositions, two resonance modes coexist. As doping increases, the low-energy resonance gradually loses its spectral weight to the high-energy one but remains at the same energy. By contrast, in the overdoped regime we only find one single resonance, which acquires a broader width in both energy and momentum but retains approximately the same peak position even when Tc drops by nearly a half compared to optimal doping. These results suggest that the energy of the resonance in electron overdoped NaFe1−xCoxAs is neither simply proportional to Tc nor the superconducting gap but is controlled by the multiorbital character of the system and doped impurity scattering effect.

Journal article

Zhang, Chenglin, Lv, Weicheng, Tan, Guotai, et al.. "Electron doping evolution of the neutron spin resonance in NaFe1−xCoxAs." Physical Review B, 93, no. 17 (2016) American Physical Society: https://doi.org/10.1103/PhysRevB.93.174522.

Has part(s)
Forms part of
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Link to license
Citable link to this page