Band structure dependent electronic localization in macroscopic films of single-chirality single-wall carbon nanotubes

dc.citation.firstpage774en_US
dc.citation.journalTitleCarbonen_US
dc.citation.lastpage779en_US
dc.citation.volumeNumber183en_US
dc.contributor.authorGao, Weiluen_US
dc.contributor.authorAdinehloo, Davouden_US
dc.contributor.authorLi, Xinweien_US
dc.contributor.authorMojibpour, Alien_US
dc.contributor.authorYomogida, Yoheien_US
dc.contributor.authorHirano, Atsushien_US
dc.contributor.authorTanaka, Takeshien_US
dc.contributor.authorKataura, Hiromichien_US
dc.contributor.authorZheng, Mingen_US
dc.contributor.authorPerebeinos, Vasilien_US
dc.contributor.authorKono, Junichiroen_US
dc.date.accessioned2021-08-24T18:03:18Zen_US
dc.date.available2021-08-24T18:03:18Zen_US
dc.date.issued2021en_US
dc.description.abstractSignificant understanding has been achieved over the last few decades regarding chirality-dependent properties of single-wall carbon nanotubes (SWCNTs), primarily through single-tube studies. However, macroscopic manifestations of chirality dependence have been limited, especially in electronic transport, despite the fact that such distinct behaviors are needed for many applications of SWCNT-based devices. In addition, developing reliable transport theory is challenging since a description of localization phenomena in an assembly of nanoobjects requires precise knowledge of disorder on multiple spatial scales, particularly if the ensemble is heterogeneous. Here, we report an observation of pronounced chirality-dependent electronic localization in temperature and magnetic field dependent conductivity measurements on macroscopic films of single-chirality SWCNTs. The samples included large-gap semiconducting (6,5) and (10,3) films, narrow-gap semiconducting (7,4) and (8,5) films, and armchair metallic (6,6) films. Experimental data and theoretical calculations revealed Mott variable-range-hopping dominated transport in all samples, while localization lengths fall into three distinct categories depending on their band gaps. Armchair films have the largest localization length. Our detailed analyses on electronic transport properties of single-chirality SWCNT films provide significant new insight into electronic transport in ensembles of nanoobjects, offering foundations for designing and deploying macroscopic SWCNT solid-state devices.en_US
dc.identifier.citationGao, Weilu, Adinehloo, Davoud, Li, Xinwei, et al.. "Band structure dependent electronic localization in macroscopic films of single-chirality single-wall carbon nanotubes." <i>Carbon,</i> 183, (2021) Elsevier: 774-779. https://doi.org/10.1016/j.carbon.2021.07.057.en_US
dc.identifier.doihttps://doi.org/10.1016/j.carbon.2021.07.057en_US
dc.identifier.urihttps://hdl.handle.net/1911/111335en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier.en_US
dc.subject.keywordCarbon nanotubesen_US
dc.subject.keywordSingle-chirality filmsen_US
dc.subject.keywordElectronic transporten_US
dc.titleBand structure dependent electronic localization in macroscopic films of single-chirality single-wall carbon nanotubesen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Accepted_Manuscript_Carbon.pdf
Size:
7.63 MB
Format:
Adobe Portable Document Format
Description: