Identification of hadronic tau lepton decays using a deep neural network

dc.citation.articleNumberP07023en_US
dc.citation.issueNumber7en_US
dc.citation.journalTitleJournal of Instrumentationen_US
dc.citation.volumeNumber17en_US
dc.contributor.authorThe CMS collaborationen_US
dc.date.accessioned2022-09-01T14:18:20Zen_US
dc.date.available2022-09-01T14:18:20Zen_US
dc.date.issued2022en_US
dc.description.abstractA new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (τh) that originate from genuine tau leptons in the CMS detector against τh candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a τh candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine τh to pass the discriminator against jets increases by 10–30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient τh reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved τh reconstruction method are validated with LHC proton-proton collision data at √s = 13 TeV.en_US
dc.identifier.citationThe CMS collaboration. "Identification of hadronic tau lepton decays using a deep neural network." <i>Journal of Instrumentation,</i> 17, no. 7 (2022) IOP Publishing: https://doi.org/10.1088/1748-0221/17/07/P07023.en_US
dc.identifier.digitalTumasyan_2022en_US
dc.identifier.doihttps://doi.org/10.1088/1748-0221/17/07/P07023en_US
dc.identifier.urihttps://hdl.handle.net/1911/113164en_US
dc.language.isoengen_US
dc.publisherIOP Publishingen_US
dc.rightsPublished by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleIdentification of hadronic tau lepton decays using a deep neural networken_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tumasyan_2022.pdf
Size:
1018.64 KB
Format:
Adobe Portable Document Format