Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules

dc.citation.firstpage415en_US
dc.citation.journalTitleNature Physicsen_US
dc.citation.lastpage421en_US
dc.citation.volumeNumber20en_US
dc.contributor.authorGregory, Philip D.en_US
dc.contributor.authorFernley, Luke M.en_US
dc.contributor.authorTao, Albert Lien_US
dc.contributor.authorBromley, Sarah L.en_US
dc.contributor.authorStepp, Jonathanen_US
dc.contributor.authorZhang, Zewenen_US
dc.contributor.authorKotochigova, Svetlanaen_US
dc.contributor.authorHazzard, Kaden R. A.en_US
dc.contributor.authorCornish, Simon L.en_US
dc.contributor.orgRice Center for Quantum Materialsen_US
dc.date.accessioned2024-10-08T13:27:48Zen_US
dc.date.available2024-10-08T13:27:48Zen_US
dc.date.issued2024en_US
dc.description.abstractUltracold polar molecules combine a rich structure of long-lived internal states with access to controllable long-range anisotropic dipole–dipole interactions. In particular, the rotational states of polar molecules confined in optical tweezers or optical lattices may be used to encode interacting qubits for quantum computation or pseudo-spins for simulating quantum magnetism. As with all quantum platforms, the engineering of robust coherent superpositions of states is vital. However, for optically trapped molecules, the coherence time between rotational states is typically limited by inhomogeneous differential light shifts. Here we demonstrate a rotationally magic optical trap for 87Rb133Cs molecules that supports a Ramsey coherence time of 0.78(4) s in the absence of dipole–dipole interactions. This is estimated to extend to >1.4 s at the 95% confidence level using a single spin-echo pulse. In our trap, dipolar interactions become the dominant mechanism by which Ramsey contrast is lost for superpositions that generate oscillating dipoles. By changing the states forming the superposition, we tune the effective dipole moment and show that the coherence time is inversely proportional to the strength of the dipolar interaction. Our work unlocks the full potential of the rotational degree of freedom in molecules for quantum computation and quantum simulation.en_US
dc.identifier.citationGregory, P. D., Fernley, L. M., Tao, A. L., Bromley, S. L., Stepp, J., Zhang, Z., Kotochigova, S., Hazzard, K. R. A., & Cornish, S. L. (2024). Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules. Nature Physics, 20(3), 415–421. https://doi.org/10.1038/s41567-023-02328-5en_US
dc.identifier.digitals41567-023-02328-5en_US
dc.identifier.doihttps://doi.org/10.1038/s41567-023-02328-5en_US
dc.identifier.urihttps://hdl.handle.net/1911/117924en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleSecond-scale rotational coherence and dipolar interactions in a gas of ultracold polar moleculesen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41567-023-02328-5.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format