Design and fabrication of a Preformed Thixotropic-Viscoelastic Nanocomposite hydrogel system (PNCH) for controlling sand production in reservoirs
dc.citation.articleNumber | 101089 | en_US |
dc.citation.journalTitle | Results in Engineering | en_US |
dc.citation.volumeNumber | 18 | en_US |
dc.contributor.author | Saghandali, Farzin | en_US |
dc.contributor.author | Baghban Salehi, Mahsa | en_US |
dc.contributor.author | Taghikhani, Vahid | en_US |
dc.date.accessioned | 2023-07-21T16:13:33Z | en_US |
dc.date.available | 2023-07-21T16:13:33Z | en_US |
dc.date.issued | 2023 | en_US |
dc.description.abstract | In this study, the performance of preformed dual crosslinked nanocomposite hydrogels (PNCH) consisting of acrylamide, 2-acrylamide-2-methylpropane sulfonic acid, maleic acid, and acrylic acid in sand control was investigated. Also, the effects of three nanoparticles (NPs) of iron (PNCH1), silicon (PNCH2), and bentonite (PNCH3) on the PNCH structure were studied. The morphology, equilibrium swelling ratio (ESR), rheology, thermal strength, zeta potential, and compressive strength were experimentally analyzed. According to the XRD results, the NPs were completely dispersed in all three samples. The results of SEM and EDS tests confirmed the presence of NPs within the PNCHs with a dense, homogeneous, and porous structure. The results of the ESR at distilled and formation water at ambient temperature for PNCHs (1), (2), and (3) were (13.9,4.55), (15.45, 6.35), and (12.9, 4.8), also at reservoir temperatures ESR results were reported (78, 17.5), (89, 13), and (70,12.9) respectively. From the TGA results, structure destruction of PNCHs starts at 222, 225, and 202 °C respectively so the addition of 1 wt% of NPs increased the structure destruction from nearly 80 °C to more than 200 °C. Based on the results of the strain sweep test, structures of PNCHs can cause viscoelastic behavior with the maximum elastic modulus of 29,000, 8430, and 10,800, and critical strain of (10%, 19.3%, and 10.8%) respectively. The loop test results confirmed the time-dependent viscoelastic properties of thixotropic in all structures. Finally, in compressive strength test revealed that adding 0.5 pore volume of 1 wt% of PNCH into the sandpack increased its strength by 980%. | en_US |
dc.identifier.citation | Saghandali, Farzin, Baghban Salehi, Mahsa and Taghikhani, Vahid. "Design and fabrication of a Preformed Thixotropic-Viscoelastic Nanocomposite hydrogel system (PNCH) for controlling sand production in reservoirs." <i>Results in Engineering,</i> 18, (2023) Elsevier: https://doi.org/10.1016/j.rineng.2023.101089. | en_US |
dc.identifier.digital | 1-s2-0-S2590123023002165-main | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.rineng.2023.101089 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/114965 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder. | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.title | Design and fabrication of a Preformed Thixotropic-Viscoelastic Nanocomposite hydrogel system (PNCH) for controlling sand production in reservoirs | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | publisher version | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2-0-S2590123023002165-main.pdf
- Size:
- 8.24 MB
- Format:
- Adobe Portable Document Format