Magnesium Fluctuations Modulate RNA Dynamics in the SAM-I Riboswitch
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Experiments demonstrate that Mg2+ is crucial for structure and function of RNA systems, yet the detailed molecular mechanism of Mg2+ action on RNA is not well understood. We investigate the interplay between RNA and Mg2+ at atomic resolution through ten 2-μs explicit solvent molecular dynamics simulations of the SAM-I riboswitch with varying ion concentrations. The structure, including three stemloops, is very stable on this time scale. Simulations reveal that outer-sphere coordinated Mg2+ ions fluctuate on the same time scale as the RNA, and that their dynamics couple. Locally, Mg2+ association affects RNA conformation through tertiary bridging interactions; globally, increasing Mg2+ concentration slows RNA fluctuations. Outer-sphere Mg2+ ions responsible for these effects account for 80% of Mg2+ in our simulations. These ions are transiently bound to the RNA, maintaining interactions, but shuttled from site to site. Outer-sphere Mg2+ are separated from the RNA by a single hydration shell, occupying a thin layer 3–5 Å from the RNA. Distribution functions reveal that outer-sphere Mg2+ are positioned by electronegative atoms, hydration layers, and a preference for the major groove. Diffusion analysis suggests transient outer-sphere Mg2+ dynamics are glassy. Since outer-sphere Mg2+ ions account for most of the Mg2+ in our simulations, these ions may change the paradigm of Mg2+–RNA interactions. Rather than a few inner-sphere ions anchoring the RNA structure surrounded by a continuum of diffuse ions, we observe a layer of outer-sphere coordinated Mg2+ that is transiently bound but strongly coupled to the RNA.
Description
Advisor
Degree
Type
Keywords
Citation
Hayes, Ryan L., Noel, Jeffrey K., Mohanty, Udayan, et al.. "Magnesium Fluctuations Modulate RNA Dynamics in the SAM-I Riboswitch." Journal of the American Chemical Society, 134, no. 29 (2012) American Chemical Society: 12043-12053. http://dx.doi.org/10.1021/ja301454u.