Enabling Solution Processable COFs through Suppression of Precipitation during Solvothermal Synthesis
dc.citation.firstpage | 20964 | en_US |
dc.citation.issueNumber | 12 | en_US |
dc.citation.journalTitle | ACS Nano | en_US |
dc.citation.lastpage | 20974 | en_US |
dc.citation.volumeNumber | 16 | en_US |
dc.contributor.author | Khalil, Safiya | en_US |
dc.contributor.author | Meyer, Matthew D. | en_US |
dc.contributor.author | Alazmi, Abdullah | en_US |
dc.contributor.author | Samani, Mohammad H. K. | en_US |
dc.contributor.author | Huang, Po-Chun | en_US |
dc.contributor.author | Barnes, Morgan | en_US |
dc.contributor.author | Marciel, Amanda B. | en_US |
dc.contributor.author | Verduzco, Rafael | en_US |
dc.contributor.org | Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment | en_US |
dc.date.accessioned | 2023-02-16T20:32:55Z | en_US |
dc.date.available | 2023-02-16T20:32:55Z | en_US |
dc.date.issued | 2022 | en_US |
dc.description.abstract | Covalent organic frameworks (COFs) are crystalline, nanoporous materials of interest for various applications, but current COF synthetic routes lead to insoluble aggregates which precludes processing for practical implementation. Here, we report a COF synthesis method that produces a stable, homogeneous suspension of crystalline COF nanoparticles that enables the preparation of COF monoliths, membranes, and films using conventional solution-processing techniques. Our approach involves the use of a polar solvent, diacid catalyst, and slow reagent mixing procedure at elevated temperatures which altogether enable access to crystalline COF nanoparticle suspension that does not aggregate or precipitate when kept at elevated temperatures. On cooling, the suspension undergoes a thermoreversible gelation transition to produce crystalline and highly porous COF materials. We further show that the modified synthesis approach is compatible with various COF chemistries, including both large- and small-pore imine COFs, hydrazone-linked COFs, and COFs with rhombic and hexagonal topologies, and in each case, we demonstrate that the final product has excellent crystallinity and porosity. The final materials contain both micro- and macropores, and the total porosity can be tuned through variation of sample annealing. Dynamic light scattering measurements reveal the presence of COF nanoparticles that grow with time at room temperature, transitioning from a homogeneous suspension to a gel. Finally, we prepare imine COF membranes and measure their rejection of polyethylene glycol (PEG) polymers and oligomers, and these measurements exhibit size-dependent rejection and adsorption of PEG solutes. This work demonstrates a versatile processing strategy to create crystalline and porous COF materials using solution-processing techniques and will greatly advance the development of COFs for various applications. | en_US |
dc.identifier.citation | Khalil, Safiya, Meyer, Matthew D., Alazmi, Abdullah, et al.. "Enabling Solution Processable COFs through Suppression of Precipitation during Solvothermal Synthesis." <i>ACS Nano,</i> 16, no. 12 (2022) American Chemical Society: 20964-20974. https://doi.org/10.1021/acsnano.2c08580. | en_US |
dc.identifier.doi | https://doi.org/10.1021/acsnano.2c08580 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/114456 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | American Chemical Society | en_US |
dc.rights | This is an author's post-print. The published article is copyrighted by the American Chemical Society. | en_US |
dc.title | Enabling Solution Processable COFs through Suppression of Precipitation during Solvothermal Synthesis | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | post-print | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Nov-2-2022-No-Highlights.pdf
- Size:
- 1.18 MB
- Format:
- Adobe Portable Document Format
- Description: