Mass scaling and nonadiabatic effects in photoassociation spectroscopy of ultracold strontium atoms

dc.citation.articleNumber32713en_US
dc.citation.issueNumber3en_US
dc.citation.journalTitlePhysical Review Aen_US
dc.citation.volumeNumber90en_US
dc.contributor.authorBorkowski, Mateuszen_US
dc.contributor.authorMorzyński, Piotren_US
dc.contributor.authorCiuryło, Romanen_US
dc.contributor.authorJulienne, Paul S.en_US
dc.contributor.authorYan, Mien_US
dc.contributor.authorDeSalvo, Brian J.en_US
dc.contributor.authorKillian, T.C.en_US
dc.date.accessioned2017-06-01T18:53:01Zen_US
dc.date.available2017-06-01T18:53:01Zen_US
dc.date.issued2014en_US
dc.description.abstractWe report photoassociation spectroscopy of ultracold 86Sr atoms near the intercombination line and provide theoretical models to describe the obtained bound-state energies. We show that using only the molecular states correlating with the 1S0+3P1 asymptote is insufficient to provide a mass-scaled theoretical model that would reproduce the bound-state energies for all isotopes investigated to date: 84Sr,86Sr, and 88Sr. We attribute that to the recently discovered avoided crossing between the 1S0+3P1 0+u (3Πu) and 1S0+1D2 0+u (1Σ+u) potential curves at short range and we build a mass-scaled interaction model that quantitatively reproduces the available 0+u and 1u bound-state energies for the three stable bosonic isotopes. We also provide isotope-specific two-channel models that incorporate the rotational (Coriolis) mixing between the 0+u and 1u curves which, while not mass scaled, are capable of quantitatively describing the vibrational splittings observed in experiment. We find that the use of state-of-the-art ab initio potential curves significantly improves the quantitative description of the Coriolis mixing between the two −8-GHz bound states in 88Sr over the previously used model potentials. We show that one of the recently reported energy levels in 84Sr does not follow the long-range bound-state series and theorize on the possible causes. Finally, we give the Coriolis-mixing angles and linear Zeeman coefficients for all of the photoassociation lines. The long-range van der Waals coefficients C6(0+u)=3868(50) a.u. and C6(1u)=4085(50) a.u. are reported.en_US
dc.identifier.citationBorkowski, Mateusz, Morzyński, Piotr, Ciuryło, Roman, et al.. "Mass scaling and nonadiabatic effects in photoassociation spectroscopy of ultracold strontium atoms." <i>Physical Review A,</i> 90, no. 3 (2014) American Physical Society: https://doi.org/10.1103/PhysRevA.90.032713.en_US
dc.identifier.doihttps://doi.org/10.1103/PhysRevA.90.032713en_US
dc.identifier.urihttps://hdl.handle.net/1911/94756en_US
dc.language.isoengen_US
dc.publisherAmerican Physical Societyen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.titleMass scaling and nonadiabatic effects in photoassociation spectroscopy of ultracold strontium atomsen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mass-scaling.pdf
Size:
940.13 KB
Format:
Adobe Portable Document Format
Description: