Electron doping evolution of the magnetic excitations in NaFe1−xCoxAs
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We use time-of-flight (TOF) inelastic-neutron-scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe 1 − x Co x As with x
0 , 0.0175, 0.0215, 0.05, and 0.11 . The effect of electron doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden, and suppress low-energy ( E ≤ 80 meV) spin excitations compared with spin waves in undoped NaFeAs. However, high-energy ( E
80 meV) spin excitations are weakly Co-doping-dependent. Integration of the local spin dynamic susceptibility χ ' ' ( ω ) of NaFe 1 − x Co x As reveals a total fluctuating moment of 3.6 μ 2 B /Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in Co-overdoped nonsuperconducting NaFe 0.89 Co 0.11 As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel the Ni-doping evolution of spin excitations in BaFe 2 − x Ni x As 2 in spite of the differences in crystal structures and Fermi surface evolution in these two families of iron pnictides, thus confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping-dependent high-energy spin excitations result from localized moments.
Description
Advisor
Degree
Type
Keywords
Citation
Carr, Scott V., Zhang, Chenglin, Song, Yu, et al.. "Electron doping evolution of the magnetic excitations in NaFe1−xCoxAs." Physical Review B, 93, no. 21 (2016) American Physical Society: https://doi.org/10.1103/PhysRevB.93.214506.