Numerical Calculations of Adiabatic Invariants From MHD-Driven Magnetic Fields

dc.citation.articleNumbere2023JA032397en_US
dc.citation.issueNumber6en_US
dc.citation.journalTitleJournal of Geophysical Research: Space Physicsen_US
dc.citation.volumeNumber129en_US
dc.contributor.authorda Silva, D. E.en_US
dc.contributor.authorElkington, S. R.en_US
dc.contributor.authorLi, X.en_US
dc.contributor.authorMurphy, J.en_US
dc.contributor.authorHudson, M. K.en_US
dc.contributor.authorWiltberger, M. J.en_US
dc.contributor.authorChan, A. A.en_US
dc.date.accessioned2024-08-22T15:28:47Zen_US
dc.date.available2024-08-22T15:28:47Zen_US
dc.date.issued2024en_US
dc.description.abstractThe adiabatic invariants (M, J, Φ) and the related invariants (M, K, L*) have been established as effective coordinate systems for describing radiation belt dynamics at a theoretical level, and through numerical techniques, can be paired with in situ observations to order phase-space density. To date, methods for numerical techniques to calculate adiabatic invariants have focused on empirical models such the Tsyganenko models TS05, T96, and T89. In this work, we develop methods based on numerical integration and variable step size iteration for the calculation of adiabatic invariants, applying the method to the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) simulation code, with optional coupling to the Rice Convection Model (RCM). By opening the door to adiabatic invariant modeling with MHD magnetic fields, the opportunity for exploratory modeling work of radiation belt dynamics is enabled. Calculations performed using LFM are cross-referenced with the same code applied to the T96 and TS05 Tsyganenko models evaluated on the LFM grid. Important aspects of the adiabatic invariant calculation are reviewed and discussed, including (a) sensitivity to magnetic field model used, (b) differences in the problem between quiet and disturbed geomagnetic states, and (c) the selection of key parameters, such as the magnetic local time step size for drift shell determination. The rigorous development and documentation of this algorithm additionally acts as preliminary step for future thorough reassessment of in situ phase-space density results using alternative magnetic field models.en_US
dc.identifier.citationda Silva, D. E., Elkington, S. R., Li, X., Murphy, J., Hudson, M. K., Wiltberger, M. J., & Chan, A. A. (2024). Numerical Calculations of Adiabatic Invariants From MHD-Driven Magnetic Fields. Journal of Geophysical Research: Space Physics, 129(6), e2023JA032397. https://doi.org/10.1029/2023JA032397en_US
dc.identifier.digitalNumerical-Calculationsen_US
dc.identifier.doihttps://doi.org/10.1029/2023JA032397en_US
dc.identifier.urihttps://hdl.handle.net/1911/117684en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license.  Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleNumerical Calculations of Adiabatic Invariants From MHD-Driven Magnetic Fieldsen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Numerical-Calculations.pdf
Size:
5.07 MB
Format:
Adobe Portable Document Format