Electron correlation in solids via density embedding theory

Date
2014
Journal Title
Journal ISSN
Volume Title
Publisher
AIP Publishing
Abstract

Density matrix embeddingᅠtheoryᅠ[G. Knizia and G. K.-L. Chan,ᅠPhys. Rev. Lett.109, 186404 (2012)] and density embeddingᅠtheoryᅠ[I. W. Bulik, G. E. Scuseria, and J. Dukelsky,ᅠPhys. Rev. Bᅠ89, 035140 (2014)] have recently been introduced for model lattice Hamiltonians and molecular systems. In the present work, the formalism is extended to theᅠab initioᅠdescription of infinite systems. An appropriate definition of the impurity Hamiltonian for such systems is presented and demonstrated in cases of 1, 2, and 3 dimensions, usingᅠcoupled clusterᅠtheoryᅠas the impurity solver. Additionally, we discuss the challenges related to disentanglement of fragment and bath states. The current approach yields results comparable toᅠcoupled clusterᅠcalculations of infinite systems even when using a single unit cell as the fragment. Theᅠtheoryᅠis formulated in the basis of Wannier functions but it does not require separate localization of unoccupied bands. The embedding scheme presented here is a promising way of employing highly accurate electronic structure methods for extended systems at a fraction of their original computational cost.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Bulik, Ireneusz W., Chen, Weibing and Scuseria, Gustavo E.. "Electron correlation in solids via density embedding theory." The Journal of Chemical Physics, 141, no. 5 (2014) AIP Publishing: http://dx.doi.org/10.1063/1.4891861.

Has part(s)
Forms part of
Rights
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Link to license
Citable link to this page