Superfluorescence from photoexcited semiconductor quantum wells: Magnetic field, temperature, and excitation power dependence

dc.citation.firstpage235448
dc.citation.issueNumber23
dc.citation.journalTitlePhysical Review B
dc.citation.volumeNumber91
dc.contributor.authorCong, Kankan
dc.contributor.authorWang, Yongrui
dc.contributor.authorKim, Ji-Hee
dc.contributor.authorNoe, G. Timothy II
dc.contributor.authorMcGill, Stephen A.
dc.contributor.authorBelyanin, Alexey
dc.contributor.authorKono, Junichiro
dc.date.accessioned2016-06-10T19:50:42Z
dc.date.available2016-06-10T19:50:42Z
dc.date.issued2015
dc.description.abstractSuperfluorescence (SF) is a many-body process in which a macroscopic polarization spontaneously builds up from an initially incoherent ensemble of excited dipoles and then cooperatively decays, producing a delayed pulse of coherent radiation. SF arising from electron-hole recombination has recently been observed in In0.2Ga0.8As/GaAs quantum wells [G. T. Noe et al., Nature Phys. 8, 219 (2012) and J.-H. Kim et al., Sci. Rep. 3, 3283 (2013)], but its observability conditions have not been fully established. Here, by performing magnetic field (B), temperature (T), and pump power (P) dependent studies of SF intensity, linewidth, and delay time through time-integrated and time-resolved magnetophotoluminescence spectroscopy, we have mapped out the B−T−P region in which SF is observable. In general, SF can be observed only at sufficiently low temperatures, sufficiently high magnetic fields, and sufficiently high laser powers with characteristic threshold behavior. We provide theoretical insights into these behaviors based primarily on considerations on how the growth rate of macroscopic coherence depends on these parameters. These results provide fundamental new insight into electron-hole SF, highlighting the importance of Coulomb interactions among photogenerated carriers as well as various scattering processes that are absent in SF phenomena in atomic and molecular systems.
dc.identifier.citationCong, Kankan, Wang, Yongrui, Kim, Ji-Hee, et al.. "Superfluorescence from photoexcited semiconductor quantum wells: Magnetic field, temperature, and excitation power dependence." <i>Physical Review B,</i> 91, no. 23 (2015) American Physical Society: 235448. http://dx.doi.org/10.1103/PhysRevB.91.235448.
dc.identifier.doihttp://dx.doi.org/10.1103/PhysRevB.91.235448
dc.identifier.urihttps://hdl.handle.net/1911/90501
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
dc.titleSuperfluorescence from photoexcited semiconductor quantum wells: Magnetic field, temperature, and excitation power dependence
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpublisher version
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevB.91.235448.pdf
Size:
3.98 MB
Format:
Adobe Portable Document Format
Description: