Artificial Soils Reveal Individual Factor Controls on Microbial Processes

dc.citation.articleNumbere00301-22en_US
dc.citation.issueNumber4en_US
dc.citation.journalTitlemSystemsen_US
dc.citation.volumeNumber7en_US
dc.contributor.authorDel Valle, Ilenneen_US
dc.contributor.authorGao, Xiaodongen_US
dc.contributor.authorGhezzehei, Teamrat A.en_US
dc.contributor.authorSilberg, Jonathan J.en_US
dc.contributor.authorMasiello, Caroline A.en_US
dc.contributor.orgBioengineeringen_US
dc.contributor.orgBiosciencesen_US
dc.contributor.orgChemical and Biomolecular Engineeringen_US
dc.contributor.orgChemistryen_US
dc.contributor.orgEarth, Environmental and Planetary Sciencesen_US
dc.date.accessioned2022-09-29T15:06:35Zen_US
dc.date.available2022-09-29T15:06:35Zen_US
dc.date.issued2022en_US
dc.description.abstractSoil matrix properties influence microbial behaviors that underlie nutrient cycling, greenhouse gas production, and soil formation. However, the dynamic and heterogeneous nature of soils makes it challenging to untangle the effects of different matrix properties on microbial behaviors. To address this challenge, we developed a tunable artificial soil recipe and used these materials to study the abiotic mechanisms driving soil microbial growth and communication. When we used standardized matrices with varying textures to culture gas-reporting biosensors, we found that a Gram-negative bacterium (Escherichia coli) grew best in synthetic silt soils, remaining active over a wide range of soil matric potentials, while a Gram-positive bacterium (Bacillus subtilis) preferred sandy soils, sporulating at low water potentials. Soil texture, mineralogy, and alkalinity all attenuated the bioavailability of an acyl-homoserine lactone (AHL) signaling molecule that controls community-level microbial behaviors. Texture controlled the timing of AHL sensing, while AHL bioavailability was decreased ~105-fold by mineralogy and ~103-fold by alkalinity. Finally, we built artificial soils with a range of complexities that converge on the properties of one Mollisol. As artificial soil complexity increased to more closely resemble the Mollisol, microbial behaviors approached those occurring in the natural soil, with the notable exception of organic matter.en_US
dc.identifier.citationDel Valle, Ilenne, Gao, Xiaodong, Ghezzehei, Teamrat A., et al.. "Artificial Soils Reveal Individual Factor Controls on Microbial Processes." <i>mSystems,</i> 7, no. 4 (2022) American Society for Microbiology: https://doi.org/10.1128/msystems.00301-22.en_US
dc.identifier.digitalmsystems-00301-22en_US
dc.identifier.doihttps://doi.org/10.1128/msystems.00301-22en_US
dc.identifier.urihttps://hdl.handle.net/1911/113445en_US
dc.language.isoengen_US
dc.publisherAmerican Society for Microbiologyen_US
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleArtificial Soils Reveal Individual Factor Controls on Microbial Processesen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
msystems-00301-22.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format