Evidence for nuclear internalisation of biocompatible [60]fullerene1)
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Many types of nanoparticles (NPs) have been shown to internalise within mammalian cells (1), but only a few have been observed to internalise within the cell nucleus-most likely due to the tightly-regulated nuclear membrane (2). Internalisation of NPs into the nucleus is desirable for several reasons, including their use as 1. transfection agents (3), 2. drug delivery platforms for drugs that act on DNA (4), and 3. hyperthermia-inducing agents for cancer therapy using non-invasive stimulation by radiofrequency irradiation (5), magnetic-field cycling (6), or photonic activation (7). For example, derivatised NPs, including protein-functionalised quantum dots (8) and peptide-functionalised gold NPs (9), have been shown to internalise into the nucleus. For underivatised NPs, single-walled carbon nanotubes (SWNTs), have been observed by direct transmission electron microscopy (TEM) imaging to also localise in the nucleus of human macrophage cells with dose-dependent cytotoxicity (10). Fullerene C60ᅠis another classic carbon-based NP, however it was not been shown to enter the cell nucleus until recently. In particular, a water soluble derivative of C60ᅠfluorescently labelled with a small molecule fluorophore was shown to enter cell nuclei through nuclear pore complexes in liver cancer cells (11). Here, we validate the nuclear internalisation ability of the C60derivative in several other cell types, further supporting the unique intracellular biodistribution property of this specific fullerene compound.
Description
Advisor
Degree
Type
Keywords
Citation
Huang, Feiran, Mackeyev, Yuri, Watson, Erin, et al.. "Evidence for nuclear internalisation of biocompatible [60]fullerene1)." European Journal of Nanomedicine, 5, no. 1 (2013) Walter de Gruyter GmbH: 51-55. http://dx.doi.org/10.1515/ejnm-2012-0009.