A short note on a Bernstein-Bezier basis for the pyramid

dc.citation.articleNumberA2162en_US
dc.citation.firstpageA2172en_US
dc.citation.issueNumber4en_US
dc.citation.journalTitleSIAM Journal on Scientific Computingen_US
dc.citation.volumeNumber38en_US
dc.contributor.authorChan, Jesseen_US
dc.contributor.authorWarburton, T.en_US
dc.date.accessioned2017-02-23T16:13:25Zen_US
dc.date.available2017-02-23T16:13:25Zen_US
dc.date.issued2016en_US
dc.description.abstractWe introduce a Bernstein--Bezier basis for the pyramid, whose restriction to the face reduces to the Bernstein--Bezier basis on the triangle or quadrilateral. The basis satisfies the standard positivity and partition of unity properties common to Bernstein polynomials and spans the same space as nonpolynomial pyramid bases in the literature. Procedures for differentiation and integration of these basis functions are also discussed.en_US
dc.identifier.citationChan, Jesse and Warburton, T.. "A short note on a Bernstein-Bezier basis for the pyramid." <i>SIAM Journal on Scientific Computing,</i> 38, no. 4 (2016) Society for Industrial and Applied Mathematics: A2172. http://dx.doi.org/10.1137/15M1036397.en_US
dc.identifier.doihttp://dx.doi.org/10.1137/15M1036397en_US
dc.identifier.urihttps://hdl.handle.net/1911/93976en_US
dc.language.isoengen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.titleA short note on a Bernstein-Bezier basis for the pyramiden_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
local.sword.agentConverisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
notes.pdf
Size:
582.25 KB
Format:
Adobe Portable Document Format
Description: