A short note on a Bernstein-Bezier basis for the pyramid
dc.citation.articleNumber | A2162 | en_US |
dc.citation.firstpage | A2172 | en_US |
dc.citation.issueNumber | 4 | en_US |
dc.citation.journalTitle | SIAM Journal on Scientific Computing | en_US |
dc.citation.volumeNumber | 38 | en_US |
dc.contributor.author | Chan, Jesse | en_US |
dc.contributor.author | Warburton, T. | en_US |
dc.date.accessioned | 2017-02-23T16:13:25Z | en_US |
dc.date.available | 2017-02-23T16:13:25Z | en_US |
dc.date.issued | 2016 | en_US |
dc.description.abstract | We introduce a Bernstein--Bezier basis for the pyramid, whose restriction to the face reduces to the Bernstein--Bezier basis on the triangle or quadrilateral. The basis satisfies the standard positivity and partition of unity properties common to Bernstein polynomials and spans the same space as nonpolynomial pyramid bases in the literature. Procedures for differentiation and integration of these basis functions are also discussed. | en_US |
dc.identifier.citation | Chan, Jesse and Warburton, T.. "A short note on a Bernstein-Bezier basis for the pyramid." <i>SIAM Journal on Scientific Computing,</i> 38, no. 4 (2016) Society for Industrial and Applied Mathematics: A2172. http://dx.doi.org/10.1137/15M1036397. | en_US |
dc.identifier.doi | http://dx.doi.org/10.1137/15M1036397 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/93976 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Society for Industrial and Applied Mathematics | en_US |
dc.title | A short note on a Bernstein-Bezier basis for the pyramid | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | post-print | en_US |
local.sword.agent | Converis | en_US |
Files
Original bundle
1 - 1 of 1