
A SHORT NOTE ON A BERNSTEIN-BEZIER BASIS FOR THE
PYRAMID

JESSE CHAN, T. WARBURTON

Abstract. We introduce a Bernstein-Bezier basis for the pyramid, whose restriction to the face
reduces to the Bernstein-Bezier basis on the triangle or quadrilateral. The basis satisfies the standard
positivity and partition of unity properties common to Bernstein polynomials, and spans the same
space as non-polynomial pyramid bases in the literature [1, 2, 3, 4]. Procedures for differentiation
and integration of these basis functions are also discussed.

1. Introduction. Bernstein-Bezier bases have long been ubiquitous in graphics
and computer-aided design [5, 6], though they have recently received attention for
their utility in the meshing of curved geometries and the numerical solution of par-
tial differential equations [7, 8, 9, 10, 11]. Ainsworth and Kirby both noticed that the
structure of Bernstein-Bezier polynomials on simplices allowed for reduced-complexity
algorithms for the assembly and multiplication of finite element matrices [12, 13, 14],
as well as for efficient Discontinuous Galerkin solvers [15]. These results may be sum-
marized as follows: for a basis of order N , it is possible to assemble local discretization
matrices in O(1) work per entry, and to apply these matrices for O(Nd+1) cost in d
dimensions. The hierarchical structure of Bernstein polynomials also facilitates the
construction of structure-preserving vectorial basis functions [16, 17]. Additionally,
their close connection to B-splines has been exploited to simplify the implementation
of NURBS-based finite element methods [18].

Bernstein bases on tensor product elements (quadrilaterals and hexahedra) enjoy
a natural tensor-product construction, while the construction of Bernstein bases on
simplices rely on barycentric coordinates to generalize the construction in one space
dimension. Bernstein-Bezier bases on the prism may similarly be expressed as the
tensor product of triangular and one-dimensional basis functions. However, Bernstein-
Bezier bases for the pyramid (which acts as a transitional piece to couple together
hexahedral and tetrahedral elements [3, 19]) have received less attention. Recent work
has considered the extension of such ideas to pyramids, but define Bernstein-Bezier
pyramid bases (which are distinct from Bernstein-Bezier pyramid algorithms [20, 21])
by splitting the pyramid into two tetrahedra [22, 23]. The work presented here presents
an alternative construction based on pyramid bases found in the literature [1, 2, 4],
which are non-polynomial, but contain the space of polynomials of total degree N
under vertex-based mappings. Quadrature and the computation of matrices for finite
element methods are also discussed, and condition numbers are presented for mass
and stiffness matrices on the reference element.

2. Bernstein-Bezier bases for triangles and quadrilaterals. The 1D Bern-
stein polynomials of degree N are defined as

BNi (r) =

(
N

i

)
ri(1− r)N−i, 0 ≤ i ≤ N,

for coordinate r ∈ [−1, 1]. To extend this definition to higher dimensional simplicial
domains, Bernstein-Bezier basis functions are defined in terms of the barycentric
coordinates. For example, given barycentric coordinates λ1, λ2, λ3 for the triangle,
triangular Bernstein polynomials [5] are defined as

BNijk = CNijkλ
i
1λ
j
2λ
k
3

1



Fig. 2.1: An illustration of the Duffy transform mapping an equilateral grid on the
quadrilateral to the triangle.

with positive integer indices i, j, k such that i+ j + k = N and

CNijk =
N !

i !j !k !
.

For the unit right triangle with coordinates (r, s), these barycentric coordinates are
given explicitly as

λ1 = 1− (r + s), λ2 = r, λ3 = s.

Assuming the Duffy transform

r = a(1− b), s = b,

which maps the unit quadrilateral with coordinates (a, b) ∈ [0, 1]2 to the unit right
triangle, we have that

λ1 = (1− a)(1− b), λ2 = a(1− b), λ3 = b.

This gives an alternative definition for the Bezier triangle basis on the triangle

BNijk = CNijka
j(1− a)ibk(1− b)i+j .

Since N = i+ j + k, i+ j = N − k, and we may rewrite the above as

BNijk(a, b) = CNijka
j(1− a)ibk(1− b)N−k

=
(N − k) !

i !j !
aj(1− a)iBNk (b)

= BN−ki (a)BNk (b) = BN−kj (a)BNk (b)

where BN−ki (a) is the ith Bernstein polynomial of order N − k and BNk (b) is the
kth Bernstein polynomial of order N . This decomposition is at the heart of the
sum-factorization techniques used in [12, 13, 14].

2



(a) Triangular basis (b) Quadrilateral basis

Fig. 3.1: A Bernstein-Bezier basis function on a triangular and quadrilateral domain.
Each basis function attains its maximum at a single equispaced point (in green).

3. A Bernstein-Bezier basis for the pyramid. We are interested in defining
a high order Bernstein-Bezier basis for pyramidal elements, which are used primarily
as transitional elements connecting tetrahedral and hexahedral elements. To facilitate
conformity, it is desirable for basis functions on quadrilateral and triangular faces of
the pyramid to coincide with tetrahedral and hexahedral basis functions on their
respective faces.

Since the same barycentric approach is used to define Bernstein polynomials on a
simplex of arbitrary dimension, the restriction of tetrahedral Bernstein-Bezier ba-
sis functions to a triangular face results in the triangular Bernstein-Bezier basis.
Bernstein-Bezier basis functions on quadrilaterals or hexahedra are defined using a
tensor product construction; for example, on a reference quadrilateral with coordi-
nates (a, b),

BNij (a, b) = BNi (a)BNj (b),

and for a reference hexahedron with coordinates (a, b, c), the Bernstein-Bezier basis is

BNijk(a, b, c) = BNi (a)BNj (b)BNk (c).

Similarly to the tetrahedron, restricting hexahedral Bernstein-Bezier functions to a
single face results in Bernstein-Bezier polynomials over the quadrilateral.

To extend the construction of the Bernstein-Bezier basis to the pyramid, we use a
collapsed coordinate system [24]. We define the unit cube with coordinates (a, b, c) ∈
[0, 1]3, such that the unit cube is mapped to the unit right pyramid through the
transform

(3.1) r = a(1− c), s = b(1− c), t = c.

The Bernstein-Bezier basis for the pyramid is defined on the unit cube as

(3.2) Bijk(a, b, c) = BN−ki (a)BN−kj (b)BNk (c),

where the indices obey

0 ≤ k ≤ N, 0 ≤ i, j ≤ N − k.

The total dimension of this space is Np = (N + 1)(N + 2)(2N + 3)/6.
This construction of (3.2) is exactly what results from combining triangle Bern-

stein Bezier basis functions in the a, c and b, c coordinates. The Bernstein pyramid

3



−1

0

1−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

r

s

t

(a) Cube-to-pyramid mapping (b) A Bernstein-Bezier polynomial on the pyramid

Fig. 3.2: Vertical slices of the cube mapped to the pyramid (left) and an example
of a Bernstein-Bezier basis function on the pyramid (right), with equispaced points
overlaid.

basis above satisfies the standard positivity and partition of unity properties, and
the traces reduce to Bernstein-Bezier basis functions on the triangle or quadrilateral.
This latter property simplifies the enforcement of conformity between pyramids and
tetrahedral or hexahedral elements. Additionally, the Bernstein pyramid space spans
the same space as the rational basis of Bergot, Cohen, and Durufle [1], and thus con-
tains polynomials of total degree N under a vertex-based mapping of the unit right
pyramid to physical space.
Lemma 3.1. The Bernstein pyramid basis (3.2) satisfies a pointwise positivity and
partition of unity property on the pyramid.

Proof. Since each component of the Bernstein pyramid basis is pointwise positive on
the cube, the basis is pointwise positive over the pyramid. We may also show that
the partition of unity property for the Bernstein pyramid is preserved:

N∑
k=0

N−k∑
i=0

N−k∑
j=0

Bijk =

N∑
k=0

Bk(c)

N−k∑
i=0

BN−ki (a)

N−k∑
j=0

BN−kj (b) = 1

by the fact that BNk , BN−ki , BN−kj all satisfy a partition of unity property over [0, 1].

Lemma 3.2. The trace spaces of the Bernstein pyramid basis (3.2) are Bernstein
polynomials on the faces.

Proof. We may prove the first property on the unit cube by restricting a, b to either
0 or 1 for the triangular faces, and restricting c = 0 for the quadrilateral face. For
the quadrilateral face, since Bk(c) = 0 for k > 0, the Bernstein basis is nonzero only
if k = 0, resulting in a trace of the form

Bij0 = BNi (a)BNj (b),

which is exactly the tensor product Bernstein basis over the quadrilateral face. For
the triangular faces, we take a, b = 0, 1. We show the trace space for a = 0; the other

4



faces are similar. If a = 0, the Bernstein basis is nonzero only for i = 0, and the
nonzero Bernstein basis functions follow the form

B0jk = BN−kj (b)BNk (c).

This is identical to the Bernstein basis on the triangle after a mapping to the unit
quadrilateral.

Lemma 3.3. The Bernstein pyramid space is identical to the pyramid space of Bergot,
Cohen, Durufle [1].

Proof. This is simplest to show by showing equivalence with the pyramid basis pre-
sented in [4], which is also equivalent to the basis of Bergot, Cohen, and Durufle. This

basis is constructed using Jacobi polynomials Pα,βi , which are orthogonal with respect
to a weighted L2 inner product, and Lagrange polynomials `ki (a), defined using the
set of (k + 1) Gauss-Legendre quadrature points. This “semi-nodal” basis is given as

φijk(a, b, c) = `ki (a)`kj (b)

(
1− c

2

)k
P 2k+3
N−k (c),

or equivalently

`N−ki (a)`N−kj (b)

(
1− c

2

)N−k
P

2(N−k)+3
k (c).

As the spaces spanned by each basis are of the same dimension, it simply remains to
show that their span is identical. Since the functions in a, b

BN−ki (a)BN−kj (b), `N−ki (a)`N−kj (b), 0 ≤ i, j ≤ N − k

both span QN−k(a, b), and the functions in c(
1− c

2

)N−k
P

2(N−k)+3
k (c), BNk (c)

are both linearly independent homogeneous polynomials of total order N , the two
bases span the same approximation space.

As a result, the Bernstein pyramid contains the space of polynomials PN on any
vertex-mapped pyramid (i.e. a pyramid whose mapping from the reference to physical
coordinates is given by a low-order interpolant of the vertex positions of the physical
pyramid), and high order accurate approximations may be constructed on general
vertex-mapped pyramids.

Unlike the orthogonal bases for pyramids constructed previously, the Bernstein
basis absorbs the extra homogenizing factors of ck or (1 − c)k into the definition of
the Bernstein-Bezier basis in the c direction, resulting in a very concise formula.

3.1. Quadrature and mass matrices. Under the collapsed coordinate system,
integrals on a physical pyramid P are computed via the transformation∫

P
udx dy dz =

∫
P̂
uJ dr dsdt =

∫ 1

0

∫ 1

0

∫ 1

0

uJ(1− c)2 dadbdc.

5



where J is the determinant of the Jacobian of the mapping from reference pyramid
P̂ to P. For vertex-mapped pyramids, J , as well as all change of variables factors
∂rst
∂xyz , are bilinear in the a, b coordinates and constant in c [1, Lemma 3.5]. An
appropriate quadrature for the pyramid may then be constructed using the tensor
product of one-dimensional Gaussian quadratures in the a, b coordinates and Gauss-
Jacobi quadratures with weights (2, 0) in the c coordinate, which integrates exactly
the above expression.

It is possible to use the collapsed-coordinate nature of the pyramid basis to reduce
the cost of evaluating basis functions at quadrature points [24]. Another alternative
is to compute the entries of the mass matrix using moment-based computations. The
entries of the mass matrix are given as

Mijk,lmn =

∫
P
φijkφlmn =

∫
P̂
φijkφlmnJ =

(3.3)

∫
c

BNk (c)BNn (c)(1− c)2 dc

∫
a

∫
b

BN−ki (a)BN−nl (a)BN−kj (b)BN−nm (b)J(a, b) da db.

Fast moment-based algorithms for Bernstein-Bezier bases [13] use that the product
of two Bernstein polynomials is again a scaled Bernstein polynomial, and that the
integrals of Bernstein polynomials are explicitly known in terms of ratios of binomial
coefficients. By representing (1−c)2 and J(a, b) in one and two-dimensional Bernstein
form, respectively, the integrals in (3.3) may be broken up into integrals over each
coordinate and computed using moment-based techniques.

Additionally, since the Bernstein-Bezier basis is equivalent to the semi-nodal ba-
sis of [4], they are related by a linear transformation. This may be exploited for the
low-storage inversion of local mass matrices. Since the semi-nodal basis yields a diag-
onal mass matrix for any vertex-mapped pyramid, the Bernstein-Bezier mass matrix
may be inverted by transforming first to the semi-nodal basis, inverting a diagonal
mass matrix, then transforming back. For a mesh consisting of many pyramids, this
procedure requires less memory than directly factorizing or inverting the mass ma-
trix, as all that is required is storage of change-of-basis matrices between semi-nodal
and Bernstein-Bezier bases and the diagonal of the semi-nodal mass matrix over each
pyramid.

3.2. Conditioning of mass matrices. The numerical sensitivity of a nonsin-
gular matrix to perturbations can be estimated using the matrix condition number

κ(A) =
σ1
σNp

,

where σ1, σNp
are the largest and smallest singular values of A, respectively.

Figure 3.3 reports computed condition numbers of the reference mass and stiff-
ness matrices for both pyramidal and tetrahedral Bernstein-Bezier bases at various
orders of approximation. Dirichlet boundary conditions are enforced to ensure that
the stiffness matrix is nonsingular. The condition number of each matrix grows expo-
nentially in the order N , as expected for Bernstein-Bezier type bases. However, the
growth of the condition numbers for the pyramid is more rapid than the growth of
the condition number for the tetrahedra, and may need to be addressed in order to
maintain numerical accuracy at high orders of approximation.

6



(a) Mass matrix (b) Stiffness matrix

Fig. 3.3: Condition numbers of reference tetrahedral and pyramidal Bernstein-Bezier
mass and stiffness matrices at various orders of approximation N .

3.3. Derivative matrices. To compute derivatives with respect to reference
coordinates r, s, t, we use the chain rule, involving factors of the transform (3.1)

∂a

∂r
=
∂b

∂s
=

1

1− c
,

∂a

∂t
=

r

(1− t)2
=

a

1− c
∂b

∂t
=

s

(1− t)2
=

b

1− c
.

If k = N , the derivative is zero. For k < N , we have

∂BNijk
∂r

=
∂BN−ki (a)

∂a
BN−kj (b)

BNk (c)

1− c
∂BNijk
∂s

= BN−ki (a)
∂BN−kj (b)

∂b

BNk (c)

1− c
∂BNijk
∂t

=
∂BNijk
∂a

(
a

1− c

)
+
∂BNijk
∂b

(
b

1− c

)
+
∂BNijk
∂c

.

The additional factors of a, b and 1/(1 − c) may be absorbed into the Bernstein
polynomials, and properties of one-dimensional Bernstein-Bezier polynomials may
be used to rewrite derivatives in terms of Bernstein polynomials. For example, the

expression for
∂BN

ijk

∂r simplifies to

∂BN−ki (a)

∂a
BN−kj (b)

BNk (c)

1− c
=


∂BN−k

i (a)

∂a BN−kj (b)
(N
k)

(N−1
k )

BN−1k (c), k < N

0, k = N.
.

Using one-dimensional formulas for derivatives of Bernstein polynomials, the deriva-
tive with respect to a can be written as a short linear combination

∂BN−ki (a)

∂a
= (N − k)

(
BN−k−1i−1 (a)−BN−k−1i (a)

)
.

7



From a linear algebraic perspective, it can be convenient to define a derivative matrices
Dr which map expansion coefficients of a function to expansion coefficients of its
derivative. In [25], these matrices were shown to be sparse. For the pyramid, it is
possible to recover a similar sparsity, though this requires a more nuanced definition
of the derivative matrix as a mapping.

The standard derivative matrix is defined as Dr : Vh → Vh, such that it maps
the discrete approximation space to itself. However, Dr is not sparse under the
Bernstein-Bezier basis for the pyramid. To introduce sparsity, we first define the
auxiliary Bernstein-Bezier basis B̃Nijk

B̃Nijk = BN−ki (a)BN−kj (b)BN−1k (c), 0 ≤ k ≤ N − 1, 0 ≤ i, j ≤ k.

Then, introducing the vector spaces Vh and Ṽh

Vh = span
{
BNijk

}
, Ṽh = span

{
B̃Nijk

}
,

an “auxiliary” derivative matrix D̃r can be defined as

D̃r : Vh → Ṽh

such that

u(a, b, c) =

N∑
k=0

k∑
i,j=0

uijkB
N
ijk(a, b, c)

∂u(a, b, c)

∂r
=

N−1∑
k=0

k∑
i,j=0

(
D̃ru

)
ijk

B̃Nijk(a, b, c),

where it is implicitly understood that

(a, b, c) = (a(r, s, t), b(r, s, t), c(r, s, t)) .

The two derivative matrices Dr and D̃r are related through Dr = ẼD̃r, where
Ẽ : Ṽh → Vh is an “auxiliary” degree elevation matrix such that

u(a, b, c) =

N∑
k=0

k∑
i,j=0

uijkB
N
ijk(a, b, c)

u(a, b, c) =

N−1∑
k=0

k∑
i,j=0

(
Ẽu
)
ijk

B̃Nijk(a, b, c).

While we have not derived exact expressions for entries of Ẽ, it is straightforward
to compute numerically (for example, as a projection of Ṽh onto Vh). The sparsity
pattern of each of these matrices is shown in Figure 3.4. Derivatives with respect to
s are computed in a similar fashion.

Defining sparse derivative matrices with respect to t is slightly more involved.
The chain rule implies

∂BNijk
∂t

=
∂BNijk
∂a

(
a

1− c

)
+
∂BNijk
∂b

(
b

1− c

)
+
∂BNijk
∂c

.

8



0 10 20 30 40 50

nz = 1450

0

10

20

30

40

50

(a) Dr

0 10 20 30 40 50

nz = 126

0

5

10

15

20

25

30

35

40

45

50

55

(b) D̃r

0 10 20 30 40 50

nz = 2435

0

10

20

30

40

50

(c) Ẽ

Fig. 3.4: Sparsity patterns of derivative matrices Dr, D̃r and auxiliary degree eleva-
tion matrix Ẽ for N = 4.

Examining
∂BN

ijk

∂a

(
a

1−c

)
, we have

∂BNijk
∂a

(
a

1− c

)
= a

∂BN−ki (a)

∂a
BN−kj (b)

BNk (c)

1− c

= (N − k)
(
aBN−k−1i−1 (a)− aBN−k−1i (a)

)
BN−kj (b)

(
N
k

)(
N−1
k

)BN−1k (c).

The extra factor of a may be combined with a lower degree Bernstein polynomial,
resulting in a higher degree Bernstein polynomial

aBN−k−1i (a) =

(
N − k − 1

i

)
ai+1(1− a)N−k−(i+1) =

(
N−k−1

i

)(
N−k
i+1

) BN−ki+1 (a).

This sparsifies the matrices D̃a
t , D̃

b
t , D̃

c
t , which are defined implicitly through

u(a, b, c) =
N∑
k=0

k∑
i,j=0

uijkB
N
ijk(a, b, c)

a
∂u(a, b, c)

∂a
=

N−1∑
k=0

k∑
i,j=0

(
D̃a
t u
)
ijk

B̃Nijk(a, b, c)

b
∂u(a, b, c)

∂b
=

N−1∑
k=0

k∑
i,j=0

(
D̃b
tu
)
ijk

B̃Nijk(a, b, c)

∂u(a, b, c)

∂c
=

N−1∑
k=0

k∑
i,j=0

(
D̃c
tu
)
ijk

B̃Nijk(a, b, c).

The t-derivative matrix D̃t can be defined as the sum of these matrices

D̃t = D̃a
t + D̃b

t + D̃c
t .

9



0 10 20 30 40 50

nz = 80

0

5

10

15

20

25

30

35

40

45

50

55

(a) D̃a
t

0 10 20 30 40 50

nz = 80

0

5

10

15

20

25

30

35

40

45

50

55

(b) D̃b
t

0 10 20 30 40 50

nz = 174

0

5

10

15

20

25

30

35

40

45

50

55

(c) D̃c
t

Fig. 3.5: Sparsity patterns of derivative matrices D̃a
t , D̃

b
t , D̃

c
t for N = 4.

Straightforward calculations similar to those done in [25] can be used to show that
the matrices D̃a

t , D̃
b
t , D̃

c
t contain a fixed maximum number of nonzeros per row inde-

pendent of N , allowing for efficient calculation of derivatives.

We note that computing physical derivatives requires multiplying reference deriva-
tives by geometric factors, which are non-constant for general pyramids. If these ge-
ometric factors are represented in Bernstein form, this multiplication may be done
efficiently using the moment-based algorithms described in [13] and Section 3.1 applied
to the auxiliary basis B̃Nijk.

While the derivative matrices derived in this section allow for efficient compu-
tation of derivatives, they do so by treating the derivative as a map between two
different spaces. Numerical methods such as time-domain Discontinuous Galerkin
[26] or pseudo-spectral methods are often formulated in terms of derivative matrices
mapping from Vh to itself. Unfortunately, since the auxiliary degree elevation matrix
is dense, it is presently unclear how to efficiently apply such derivative matrices in
this setting.

4. Acknowledgements. JC would like to thank John Evans for informative
discussions and for posing the question of how to construct a Bernstein-Bezier basis
on the pyramid. Both authors would like to acknowledge the support of NSF (award
number DMS-1216674) in this research.

REFERENCES

[1] Morgane Bergot, Gary Cohen, and Marc Duruflé. Higher-order finite elements for hybrid meshes
using new nodal pyramidal elements. Journal of Scientific Computing, 42(3):345–381, 2010.

[2] Nilima Nigam and Joel Phillips. High-order conforming finite elements on pyramids. IMA
Journal of Numerical Analysis, 32(2):448–483, 2012.

[3] Morgane Bergot and Marc Duruflé. Higher-order discontinuous Galerkin method for pyramidal
elements using orthogonal bases. Numerical Methods for Partial Differential Equations,
29(1):144–169, 2013.

[4] Jesse Chan and T Warburton. Orthogonal bases for vertex-mapped pyramids. arXiv preprint
arXiv:1502.07703, 2015. Accepted to SISC.

[5] Gerald Farin. Triangular Bernstein-Bézier patches. Computer Aided Geometric Design,
3(2):83–127, 1986.

[6] Gerald Farin. Curves and surfaces for computer-aided geometric design: a practical guide.
Elsevier, 2014.

10



[7] F Hindenlang, G Gassner, T Bolemann, and CD Munz. Unstructured high order grids and their
application in discontinuous Galerkin methods. In Conference Proceedings, V European
Conference on Computational Fluid Dynamics ECCOMAS CFD, pages 1–8, 2010.

[8] Amaury Johnen, J-F Remacle, and Christophe Geuzaine. Geometrical validity of high-order
triangular finite elements. Engineering with Computers, 30(3):375–382, 2014.

[9] Christophe Geuzaine, Amaury Johnen, Jonathan Lambrechts, J-F Remacle, and Thomas
Toulorge. The generation of valid curvilinear meshes. In IDIHOM: Industrialization of
High-Order Methods-A Top-Down Approach, pages 15–39. Springer, 2015.

[10] C Michoski, J Chan, L Engvall, and JA Evans. Foundations of the Blended Isogeometric
Discontinuous Galerkin (BIDG) method. 2015.

[11] Amaury Johnen and Christophe Geuzaine. Geometrical validity of curvilinear pyramidal finite
elements. Journal of Computational Physics, 299(C):124–129, 2015.

[12] Robert C Kirby. Fast simplicial finite element algorithms using Bernstein polynomials. Nu-
merische Mathematik, 117(4):631–652, 2011.

[13] Mark Ainsworth, Gaelle Andriamaro, and Oleg Davydov. Bernstein-Bézier finite elements of
arbitrary order and optimal assembly procedures. SIAM Journal on Scientific Computing,
33(6):3087–3109, 2011.

[14] Robert C Kirby and Kieu Tri Thinh. Fast simplicial quadrature-based finite element operators
using Bernstein polynomials. Numerische Mathematik, 121(2):261–279, 2012.

[15] Robert C Kirby. Efficient discontinuous Galerkin finite element methods via bernstein polyno-
mials. arXiv preprint arXiv:1504.03990, 2015.

[16] Robert C Kirby. Low-complexity finite element algorithms for the de Rham complex on sim-
plices. SIAM Journal on Scientific Computing, 36(2):A846–A868, 2014.

[17] Mark Ainsworth, Gaelle Andriamaro, and Oleg Davydov. A Bernstein–Bézier Basis for arbitrary
order Raviart-Thomas finite elements. Constructive Approximation, 41(1):1–22, 2015.

[18] Michael J Borden, Michael A Scott, John A Evans, and Thomas JR Hughes. Isogeometric finite
element data structures based on Bézier extraction of NURBS. International Journal for
Numerical Methods in Engineering, 87(1-5):15–47, 2011.

[19] Jesse Chan, Zheng Wang, Axel Modave, Jean-Francois Remacle, and T Warburton.
GPU-accelerated discontinuous Galerkin methods on hybrid meshes. arXiv preprint
arXiv:1507.02557, 2015.

[20] Ron Goldman. Pyramid algorithms: A dynamic programming approach to curves and surfaces
for geometric modeling. Morgan Kaufmann, 2002.

[21] Mark Ainsworth. Pyramid algorithms for Bernstein–Bézier finite elements of high, nonuniform
order in any dimension. SIAM Journal on Scientific Computing, 36(2):A543–A569, 2014.

[22] Juan Chen, Chong-Jun Li, and Wan-Ji Chen. A 3D pyramid spline element. Acta Mechanica
Sinica, 27(6):986–993, 2011.

[23] Mark Ainsworth, Oleg Davydov, and Larry L. Schumaker. Bernstein-Bezier finite elements on
tetrahedral-hexahedral-pyramidal partitions. 2015.

[24] George Karniadakis and Spencer J Sherwin. Spectral/hp Element Methods for CFD. Oxford
University Press, 1999.

[25] Jesse Chan and T Warburton. GPU-accelerated Bernstein-Bezier discontinuous Galerkin meth-
ods for wave problems. arXiv preprint arXiv:1512.06025, 2015.

[26] Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin methods: algorithms,
analysis, and applications, volume 54. Springer, 2007.

11


