Quantum simulation of an extended Dicke model with a magnetic solid

dc.citation.articleNumber42en_US
dc.citation.journalTitleCommunications Materialsen_US
dc.citation.volumeNumber5en_US
dc.contributor.authorMarquez Peraca, Nicolasen_US
dc.contributor.authorLi, Xinweien_US
dc.contributor.authorMoya, Jaime M.en_US
dc.contributor.authorHayashida, Kenjien_US
dc.contributor.authorKim, Dasomen_US
dc.contributor.authorMa, Xiaoxuanen_US
dc.contributor.authorNeubauer, Kelly J.en_US
dc.contributor.authorFallas Padilla, Diegoen_US
dc.contributor.authorHuang, Chien-Lungen_US
dc.contributor.authorDai, Pengchengen_US
dc.contributor.authorNevidomskyy, Andriy H.en_US
dc.contributor.authorPu, Hanen_US
dc.contributor.authorMorosan, Emiliaen_US
dc.contributor.authorCao, Shixunen_US
dc.contributor.authorBamba, Motoakien_US
dc.contributor.authorKono, Junichiroen_US
dc.date.accessioned2024-09-10T19:29:03Zen_US
dc.date.available2024-09-10T19:29:03Zen_US
dc.date.issued2024en_US
dc.description.abstractThe Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a single-mode photonic field and exhibits a quantum phase transition as a function of light–matter coupling strength. Extending this model by incorporating short-range atom–atom interactions makes the problem intractable but is expected to produce new physical phenomena and phases. Here, we simulate such an extended Dicke model using a crystal of ErFeO3, where the role of atoms (photons) is played by Er3+ spins (Fe3+ magnons). Through terahertz spectroscopy and magnetocaloric effect measurements as a function of temperature and magnetic field, we demonstrated the existence of a novel atomically ordered phase in addition to the superradiant and normal phases that are expected from the standard Dicke model. Further, we elucidated the nature of the phase boundaries in the temperature–magnetic-field phase diagram, identifying both first-order and second-order phase transitions. These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body solid-state systems.en_US
dc.identifier.citationMarquez Peraca, N., Li, X., Moya, J. M., Hayashida, K., Kim, D., Ma, X., Neubauer, K. J., Fallas Padilla, D., Huang, C.-L., Dai, P., Nevidomskyy, A. H., Pu, H., Morosan, E., Cao, S., Bamba, M., & Kono, J. (2024). Quantum simulation of an extended Dicke model with a magnetic solid. Communications Materials, 5(1), 1–9. https://doi.org/10.1038/s43246-024-00479-3en_US
dc.identifier.digitals43246-024-00479-3en_US
dc.identifier.doihttps://doi.org/10.1038/s43246-024-00479-3en_US
dc.identifier.urihttps://hdl.handle.net/1911/117869en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license.  Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleQuantum simulation of an extended Dicke model with a magnetic soliden_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s43246-024-00479-3.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format