High sound pressure piezoelectric micromachined ultrasonic transducers using sputtered potassium sodium niobate

Abstract

This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate K0.34Na0.66NbO3 (KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 Vp-p with outstanding characteristics: (1) a large vibration amplitude of 3.74 μm/V, and (2) a high acoustic root mean square (RMS) sound pressure level of 105.5 dB/V at 10 cm, which is 5–10 times higher than those of AlN-based pMUTs at a similar frequency. There are various potential sensing and actuating applications, such as fingerprint sensing, touch point, and gesture recognition. In this work, we present demonstrations in three fields: haptics, loudspeakers, and rangefinders. For haptics, an array of 15 × 15 KNN pMUTs is used as a non-contact actuator to provide a focal pressure of around 160.3 dB RMS SPL at a distance of 15 mm. This represents the highest output pressure achieved by an airborne pMUT for haptic sensation on human palms. When used as a loudspeaker, a single pMUT element with a resonant frequency close to the audible range at 22.8 kHz is characterized. It is shown to be able to generate a uniform acoustic output with an amplitude modulation scheme. In the rangefinder application, pulse-echo measurements using a single pMUT element demonstrate good transceiving results, capable of detecting objects up to 2.82 m away. As such, this new class of high-SPL and low-driving-voltage pMUTs could be further extended to other applications requiring high acoustic pressure and a small form factor.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Xia, F., Peng, Y., Yue, W., Luo, M., Teng, M., Chen, C.-M., Pala, S., Yu, X., Ma, Y., Acharya, M., Arakawa, R., Martin, L. W., & Lin, L. (2024). High sound pressure piezoelectric micromachined ultrasonic transducers using sputtered potassium sodium niobate. Microsystems & Nanoengineering, 10(1), 1–13. https://doi.org/10.1038/s41378-024-00841-y

Has part(s)
Forms part of
Rights
Except where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Citable link to this page