High sound pressure piezoelectric micromachined ultrasonic transducers using sputtered potassium sodium niobate
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate K0.34Na0.66NbO3 (KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 Vp-p with outstanding characteristics: (1) a large vibration amplitude of 3.74 μm/V, and (2) a high acoustic root mean square (RMS) sound pressure level of 105.5 dB/V at 10 cm, which is 5–10 times higher than those of AlN-based pMUTs at a similar frequency. There are various potential sensing and actuating applications, such as fingerprint sensing, touch point, and gesture recognition. In this work, we present demonstrations in three fields: haptics, loudspeakers, and rangefinders. For haptics, an array of 15 × 15 KNN pMUTs is used as a non-contact actuator to provide a focal pressure of around 160.3 dB RMS SPL at a distance of 15 mm. This represents the highest output pressure achieved by an airborne pMUT for haptic sensation on human palms. When used as a loudspeaker, a single pMUT element with a resonant frequency close to the audible range at 22.8 kHz is characterized. It is shown to be able to generate a uniform acoustic output with an amplitude modulation scheme. In the rangefinder application, pulse-echo measurements using a single pMUT element demonstrate good transceiving results, capable of detecting objects up to 2.82 m away. As such, this new class of high-SPL and low-driving-voltage pMUTs could be further extended to other applications requiring high acoustic pressure and a small form factor.
Description
Advisor
Degree
Type
Keywords
Citation
Xia, F., Peng, Y., Yue, W., Luo, M., Teng, M., Chen, C.-M., Pala, S., Yu, X., Ma, Y., Acharya, M., Arakawa, R., Martin, L. W., & Lin, L. (2024). High sound pressure piezoelectric micromachined ultrasonic transducers using sputtered potassium sodium niobate. Microsystems & Nanoengineering, 10(1), 1–13. https://doi.org/10.1038/s41378-024-00841-y