The role of protothrusts in frontal accretion and accommodation of plate convergence, Hikurangi subduction margin, New Zealand

dc.citation.firstpage440en_US
dc.citation.issueNumber2en_US
dc.citation.journalTitleGeosphereen_US
dc.citation.lastpage468en_US
dc.citation.volumeNumber14en_US
dc.contributor.authorBarnes, Philip M.en_US
dc.contributor.authorGhisetti, Francesca C.en_US
dc.contributor.authorEllis, Susanen_US
dc.contributor.authorMorgan, Julia K.en_US
dc.date.accessioned2018-09-26T14:52:42Zen_US
dc.date.available2018-09-26T14:52:42Zen_US
dc.date.issued2018en_US
dc.description.abstractProtothrusts mark the onset of deformation at the toe of large subduction accretionary wedges. They are recognized in seismic reflection sections as small-displacement (tens of meters) faults seaward of the primary frontal thrust fault. Although assumed to reflect incipient accretionary deformation and to mark the location of future thrusts, few studies discuss their displacement properties, evolution, and kinematic role during frontal accretion and propagation of the subduction décollement. We analyze high-quality geophysical and bathymetric images of the spectacular 25-km-wide Hikurangi margin protothrust zone (PTZ), the structure of which varies along strike north and south of the colliding Bennett Knoll seamount. We provide a quantitative data set on protothrust scaling relationships and fractal fault population characteristics. Our analyses lead us to speculate on the importance of stratigraphic heterogeneity in structural development, and highlight the role of protothrust arrays in the formation of the frontal thrust. We document a migrating wave of protothrust activity in association with forward advancement of the décollement and deformation front. Shortening east of the present frontal thrust, calculated from displacements on seismically imaged faults and from subseismic faulting derived from power law relationships, reveal the significant role of the PTZ in accommodating shortening. There is possibly as much as ∼7.4 km and ∼4.0 km of shortening accommodated by the PTZ south and north, respectively, of Bennett Knoll seamount. As much as ∼90% of the total shortening may be accommodated at subseismic scale. These data indicate that the active PTZ, together with older accreted PTZs, may accommodate ∼10%–50% of the total margin-normal convergence rate at the Hikurangi margin.en_US
dc.identifier.citationBarnes, Philip M., Ghisetti, Francesca C., Ellis, Susan, et al.. "The role of protothrusts in frontal accretion and accommodation of plate convergence, Hikurangi subduction margin, New Zealand." <i>Geosphere,</i> 14, no. 2 (2018) The Geological Society of America: 440-468. https://doi.org/10.1130/GES01552.1.en_US
dc.identifier.digitalrole-protothrustsen_US
dc.identifier.doihttps://doi.org/10.1130/GES01552.1en_US
dc.identifier.urihttps://hdl.handle.net/1911/102713en_US
dc.language.isoengen_US
dc.publisherThe Geological Society of Americaen_US
dc.rightsThis paper is published under the terms of the CC-BY-NC license.en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.titleThe role of protothrusts in frontal accretion and accommodation of plate convergence, Hikurangi subduction margin, New Zealanden_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
role-protothrusts.pdf
Size:
7.59 MB
Format:
Adobe Portable Document Format