Earth, Environmental and Planetary Sciences Publications

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 20 of 300
  • Item
    The Chemistry and Mineralogy (CheMin) X-ray Diffractometer on the MSL Curiosity Rover: A Decade of Mineralogy from Gale Crater, Mars
    (MDPI, 2024) Blake, David; Tu, Valerie; Bristow, Thomas; Rampe, Elizabeth; Vaniman, David; Chipera, Steve; Sarrazin, Philippe; Morris, Richard; Morrison, Shaunna; Yen, Albert; Downs, Robert; Hazen, Robert; Treiman, Allan; Ming, Douglas; Downs, Gordon; Achilles, Cherie; Castle, Nicholas; Peretyazhko, Tanya; De Marais, David; Craig, Patricia; Lafuente, Barbara; Tutolo, Benjamin; Hausrath, Elisabeth; Simpson, Sarah; Walroth, Richard; Thorpe, Michael; Meusburger, Johannes; Pandey, Aditi; Gailhanou, Marc; Dera, Przemyslaw; Berger, Jeffrey; Thompson, Lucy; Gellert, Ralf; McAdam, Amy; O’Connell-Cooper, Catherine; Sutter, Brad; Morookian, John Michael; Fraeman, Abigail; Grotzinger, John; Siebach, Kirsten; Madsen, Soren; Vasavada, Ashwin
    For more than a decade, the CheMin X-ray diffraction instrument on the Mars Science Laboratory rover, Curiosity, has been returning definitive and quantitative mineralogical and mineral–chemistry data from ~3.5-billion-year-old (Ga) sediments in Gale crater, Mars. To date, 40 drilled rock samples and three scooped soil samples have been analyzed during the rover’s 30+ km transit. These samples document the mineralogy of over 800 m of flat-lying fluvial, lacustrine, and aeolian sedimentary rocks that comprise the lower strata of the central mound of Gale crater (Aeolis Mons, informally known as Mt. Sharp) and the surrounding plains (Aeolis Palus, informally known as the Bradbury Rise). The principal mineralogy of the sedimentary rocks is of basaltic composition, with evidence of post-depositional diagenetic overprinting. The rocks in many cases preserve much of their primary mineralogy and sedimentary features, suggesting that they were never strongly heated or deformed. Using aeolian soil composition as a proxy for the composition of the deposited and lithified sediment, it appears that, in many cases, the diagenetic changes observed are principally isochemical. Exceptions to this trend include secondary nodules, calcium sulfate veining, and rare Si-rich alteration halos. A surprising and yet poorly understood observation is that nearly all of the ~3.5 Ga sedimentary rocks analyzed to date contain 15–70 wt.% of X-ray amorphous material. Overall, this >800 m section of sedimentary rock explored in lower Mt. Sharp documents a perennial shallow lake environment grading upward into alternating lacustrine/fluvial and aeolian environments, many of which would have been habitable to microbial life.
  • Item
    U-Pb LA-ICP-MS Zircon Dating of Crustal Xenoliths: Evidence of the Archean Lithosphere Beneath the Snake River Plain
    (MDPI, 2024) Leeman, William P.; Vervoort, Jeffrey D.; DuFrane, S. Andrew
    New U-Pb zircon ages are reported for granulite facies crustal xenoliths brought to the surface by mafic lavas in the Snake River Plain. All samples yield Meso-to-Neoarchean ages (2.4–3.6 Ga) that significantly expand the known extent of the Archean Wyoming Craton at least as far west as the west-central Snake River Plain. Most zircon populations indicate multiple growth episodes with complexity increasing eastward, but they bear no record of major Phanerozoic magmatic episodes in the region. To extrapolate this work further west to the inferred craton boundary, zircons from southwestern Idaho batholith granodiorites were also analyzed. Although most batholith zircons record Cretaceous formation ages, all samples have zircons with inherited cores—with some recording Proterozoic ages (approaching 2 Ga). These data enhance our perspectives regarding lithosphere architecture beneath southern Idaho and adjacent areas and its possible influence on Cenozoic magmatism associated with the Snake River Plain–Yellowstone “melting anomaly”.
  • Item
    The Sensitivity of the Spatial Pattern of Sea Level Changes to the Depth of Antarctic Meltwater Fluxes
    (Wiley, 2024) Eisenman, Ian; Basinski-Ferris, Aurora; Beer, Emma; Zanna, Laure
    Regional patterns of sea level rise are affected by a range of factors including glacial melting, which has occurred in recent decades and is projected to increase in the future, perhaps dramatically. Previous modeling studies have typically included fluxes from melting glacial ice only as a surface forcing of the ocean or as an offline addition to the sea surface height fields produced by climate models. However, observational estimates suggest that the majority of the meltwater from the Antarctic Ice Sheet actually enters the ocean at depth through ice shelf basal melt. Here we use simulations with an ocean general circulation model in an idealized configuration. The results show that the simulated global sea level change pattern is sensitive to the depth at which Antarctic meltwater enters the ocean. Further analysis suggests that the response is dictated primarily by the steric response to the depth of the meltwater flux.
  • Item
    Using forty years of research to view Bahía Almirante on the caribbean coast of Panama as an integrated social-ecological system
    (Elsevier, 2024) Collin, Rachel; Adelson, Anne E.; Altieri, Andrew H.; Clark, Kasey E.; Davis, Kristen; Giddings, Sarah N.; Kastner, Samuel; Mach, Leon; Pawlak, Geno; Sjögersten, Sofie; Torres, Mark; Scott, Cinda P.
    Tropical coastal systems play a vital role in sustaining biodiversity, performing ecological functions, and providing ecosystem services. They are also home to 75% of people in the tropics. Given that coasts face intense anthropogenic pressures including climate change, human population growth, and land-use change, it is critical to develop an understanding of the linkages between physical processes, biological interactions, and social dynamics in the complex environment where land and sea meet. Here, we review and synthesize 40 years of research from the Bahía Almirante region on the Caribbean coast of Panama, summarizing the large knowledge base of marine ecology, paleontology, ecosystem science and social science and adding newer information on physical processes. We describe how the system experiences both global and local drivers that are common to many tropical coastal systems and examine the crosscutting linkages that shape the system's response to change. To accomplish this, we utilized the Press-Pulse Dynamics framework as a lens to organize the many strands of research and to allow the interdisciplinary research team to generate explicit illustrative hypotheses about important socioecological linkages related to stressors such as the variability in precipitation and increased migration and tourism. The goal for this review and synthesis is to encourage researchers in Bahía Almirante and other estuarine systems to consider the landscape and seascape more broadly, to reach beyond their immediate field of expertise, and to consider both social and environmental aspects as they seek to increase system understanding in ways that can enable more productive public discourse surrounding policy, infrastructural change, and conservation. Resumen: Los sistemas costeros tropical juegan un rol vital en el mantenimiento de la biodiversidad, cumpliendo funciones ecológicas y previendo servicios ecosistémicos. Estos también representan el hogar para el 75% de las personas en los Trópicos. Dado que las costas enfrentan intensas presiones antropogénicas, incluido el cambio climático, el crecimiento de la población humana y el cambio en el uso de la tierra, es fundamental desarrollar una comprensión de los vínculos entre los procesos físicos, las interacciones biológicas y la dinámica social en el complejo entorno donde se encuentran la tierra y el mar. Aquí, revisamos y sintetizamos 40 años de investigación en la región de la Bahía de Almirante en la costa Caribeña de Panamá. Resumimos la gran base de conocimientos principalmente de ecología marina, paleontología y ciencias sociales y reunimos información más reciente sobre procesos físicos. Describimos cómo el sistema experimenta impulsores tanto globales como locales que son comunes a muchos sistemas costeros tropicales y examinamos los vínculos transversales que dan forma a la respuesta del sistema al cambio. Para lograr esto, se utilizó el marco Press-Pulse Dynamics como lente para organizar las muchas líneas de investigación y permitir que el equipo de investigación interdisciplinario genere hipótesis ilustrativas explícitas sobre importantes vínculos socioecológicos relacionados con factores estresantes como la variabilidad en las precipitaciones y el aumento de la migración. Y turismo. El objetivo de esta revisión y síntesis es alentar a los investigadores de Bahía Almirante y otros sistemas estuarinos a considerar el paisaje y el paisaje marino de manera más amplia, ir más allá de su campo inmediato de especialización y considerar aspectos sociales y ambientales mientras buscan aumentar el sistema. Comprensión de manera que pueda permitir un discurso público más productivo en torno a las políticas, el cambio infraestructural y la conservación.
  • Item
    Ice-marginal volcanic sequence in Iceland found on a nondescript gradual hillslope: An unexpected record of ice thickness late in deglaciation
    (Elsevier, 2024) Putnam, Audrey R.; Siebach, Kirsten L.; Bedford, Candice C.; Simpson, Sarah L.; Thorpe, Michael T.; Tamborski, Joseph J.; Rampe, Elizabeth B.
    Volcanism increases when glaciers melt because isostatic rebound during deglaciation decreases the pressure on the mantle, which enhances decompression melting. Anthropogenic climate change is now causing ice sheets and valley glaciers to melt around the world and this deglaciation could stimulate volcanic activity and associated hazards in Iceland, Antarctica, Alaska, and Patagonia. However, current model predictions for volcanic activity associated with anthropogenic deglaciation in Iceland are poorly constrained, in part due to uncertainties in past volcanic output over time compared to ice sheet arrangements. Further work specifically characterizing glaciovolcanic and ice-marginal volcanoes in Iceland is needed to reconstruct volcanic output during time periods with changing ice cover. Here, we describe a previously unrecognized ice-marginal volcanic sequence on a broad, gradual hillslope southeast of Langjökull and the Jarlhettur volcanic chain in Iceland's Western Volcanic Zone. Although previously mapped as interglacial lavas, canyons in this area revealed two southwest-dipping sequences of pillow-bearing tuff-breccias between pāhoehoe lava flows above modern lake Sandvatn. These pillow-bearing tuff-breccias and the quenched meter-scale cavities in coherent lava and cube-jointed facies show lavas came into contact with ice and pockets of trapped meltwater. However, clasts within the tuff-breccias include a mixture of pillow lavas and pāhoehoe fragments, requiring that the subaqueous tuff-breccia facies were derived from subaerial flows. In addition, we observed interfingering of subaerial and transitional subaqueous-subaerial pāhoehoe lava flows with the pillow-bearing tuff-breccias. We propose that during a deglaciation, subaerial lavas sourced upslope from near Skálpanes flowed downslope to the south and came into contact with thin ice north of the modern lake Sandvatn. We constrain the local ice at this time to be ∼30–50 m thick. Importantly, this finding demonstrates that ice-marginal deposits that can provide paleo-environmental constraints may be hidden in terrains without morphologically distinct glaciovolcanic edifices.
  • Item
    A Proxy System Modeling Approach to Combining Tree-Ring and Sediment-Based Paleotempestological Records
    (Wiley, 2024) Wallace, Elizabeth J.; Dee, Sylvia; Bregy, Joshua; Emanuel, Kerry A.
    The short and biased observational record of tropical cyclones (TCs) limits scientific understanding of how these destructive storms respond to climate forcing. Paleohurricane records use natural archives (tree rings, coarse-grained sediment) to reconstruct TC properties (frequency and intensity of rainfall, wind) over the past few hundreds to thousands of years. However, different sensitivities and sampling biases in the various paleohurricane proxies restrict our ability to compile these records into regional or basin-scale TC estimates. Here we test how well pseudo tree-ring records of paleohurricanes capture TC rainfall and occurrence. Using a large set of statistically downscaled storms forced with the Max Planck Institute (MPI-ESM-P) model as boundary conditions for the past millennium, we generate a 1000-member ensemble of pseudo tree-ring records of latewood width from southern Mississippi using a Poisson process-based random draw. Pseudo records convert synthetic TC rainfall into latewood width using a previously published statistical calibration and seasonal sensitivity. We show that fourth quantile thresholds applied to pseudo latewood data successfully identify years with TC strikes. Comparing pseudo tree-ring records with pseudo sediment records from the Gulf Coast indicates promise in combining proxies sensitive to TC rainfall with proxies sensitive to storm overwash. Sediment records that are sensitive to lower intensity storms (≥Saffir Simpson Category 1) are more compatible with tree-ring records, suggesting a need for more of these low intensity threshold records in the Gulf to facilitate future multi-proxy efforts to reconstruct past TC properties.
  • Item
    Resonant sub-Neptunes are puffier
    (edp Sciences, 2024) Leleu, Adrien; Delisle, Jean-Baptiste; Burn, Remo; Izidoro, André; Udry, Stéphane; Dumusque, Xavier; Lovis, Christophe; Millholland, Sarah; Parc, Léna; Bouchy, François; Bourrier, Vincent; Alibert, Yann; Faria, João; Mordasini, Christoph; Ségransan, Damien
    A systematic, population-level discrepancy exists between the densities of exoplanets whose masses have been measured with transit timing variations (TTVs) versus those measured with radial velocities (RVs). Since the TTV planets are predominantly nearly resonant, it is still unclear whether the discrepancy is attributed to detection biases or to astrophysical differences between the nearly resonant and non resonant planet populations. We defined a controlled, unbiased sample of 36 sub-Neptunes characterised by Kepler, TESS, HARPS, and ESPRESSO. We found that their density depends mostly on the resonant state of the system, with a low probability (of ) that the mass of (nearly) resonant planets is drawn from the same underlying population as the bulk of sub-Neptunes. Increasing the sample to 133 sub-Neptunes reveals finer details: the densities of resonant planets are similar and lower than non-resonant planets, and both the mean and spread in density increase for planets that are away from resonance. This trend is also present in RV-characterised planets alone. In addition, TTVs and RVs have consistent density distributions for a given distance to resonance. We also show that systems closer to resonances tend to be more co-planar than their spread-out counterparts. These observational trends are also found in synthetic populations, where planets that survived in their original resonant configuration retain a lower density; whereas less compact systems have undergone post-disc giant collisions that increased the planet’s density, while expanding their orbits. Our findings reinforce the claim that resonant systems are archetypes of planetary systems at their birth.
  • Item
    A failed search for concordancy across multiple isotopic systems in lunar impactites: Implications for testing the Late Heavy Bombardment hypothesis
    (Elsevier, 2024) Harrison, T. Mark; Zhang, Bidong; Parisi, Andrew F.; Bell, Elizabeth A.
    Investigations of Apollo-returned samples radically altered our understanding of lunar history which has important implications for terrestrial habitability and Solar System evolution. Radiometric dating of those samples inspired the hypothesis that Moon experienced a Late Heavy Bombardment (LHB) at ∼3.9 Ga. The LHB concept has come under several recent challenges, including the concern that 40Ar/39Ar step-heating dates of Apollo impactites had been misinterpreted. Ultraviolet laser ablation (UVLAMP) 40Ar/39Ar dates – with their capacity for much higher spatial resolution and thus potential to avoid dating near-ubiquitous clasts in impact melt rocks – should in principle provide more interpretable results. Here we compare new ion microprobe 207Pb/206Pb accessory mineral dates for two Apollo 17 impactites for which UVLAMP 40Ar/39Ar dates had been previously obtained. Our results are consistent with a single accessory phase growth event for each sample, though the two samples yielded statistically different mean ages of ca. 3.974±0.013 and 3.928±0.003 Ga. Both can reasonably be interpreted as dating an impact event, but the 207Pb/206Pb dates are older than the associated 40Ar/39Ar dates by several hundred million years. We interpret that the age differences result from subsequent thermal disturbances. The discordancy between impact ages inferred from lunar impactites using two different radiometric systems suggests caution in acceptance of the LHB hypothesis without the benefit of both larger lunar datasets and more multichronometric studies. Even with such information, our capacity to know the lunar bombardment history is likely limited by compositional and thermal effects which appear to restrict growth of impact-produced accessory minerals to a small fraction of the lunar surface. Using currently available datasets, the LHB hypothesis may be effectively untestable.
  • Item
    Subaerial crust emergence hindered by phase-driven lower crust densification on early Earth
    (AAAS, 2024) Tang, Ming; Chen, Hao; Lee, Cin-Ty A.; Cao, Wenrong
    Earth owes much of its dynamic surface to its bimodal hypsometry, manifested by high-riding continents and low-riding ocean basins. The thickness of the crust in the lithosphere exerts the dominant control on the long-wavelength elevations of continents. However, there is a limit to how high elevations can rise by crustal thickening. With continuous crustal thickening, the mafic lower crust eventually undergoes a densifying phase transition, arresting further elevation gain—an effect clearly observed in modern orogenic belts. On early Earth, lower crust densification should also limit how high a thickening crust can rise, regardless of the thickening mechanisms. We suggest that lower crust densification combined with a thicker oceanic crust in the Archean may have limited the whole-Earth topographic relief to 3 to 5 kilometers at most—half that of the present day. Unless the oceans were far less voluminous, limited relief would inevitably lead to a water world on early Earth.
  • Item
    Source mechanism of kHz microseismic events recorded in multiple boreholes at the first EGS Collab testbed
    (Elsevier, 2024) Qin, Yan; Li, Jiaxuan; Huang, Lianjie; Schoenball, Martin; Ajo-Franklin, Jonathan; Blankenship, Douglas; Kneafsey, Timothy J.; EGS Collab Team
    Continuous microseismic monitoring using three-component (3C) accelerometers deployed in multiple boreholes allows for tracking the detailed evaluation of mesoscale (∼10 m scale) fracture growth during the fracture stimulation experiments at the first Enhanced Geothermal Systems (EGS) Collab testbed. Building on a well-constrained microseismic event catalog, we invert for moment tensor of the events to better understand the fracture geometry and stress orientations. However, it is challenging because of the unknown orientation of 3C accelerometers and low signal-to-noise-ratio nature of high-frequency (several kHz) monitoring. To address these challenges, we first perform the hodogram analysis on the continuous active-source seismic monitoring (CASSM) data to determine the orientations of the 18 3C accelerometers. We then apply the principal component analysis (PCA) to the observed microseismic waveforms to improve the signal-to-noise ratios. We perform a grid search for the full moment tensor by fitting the PCA-denoised waveforms at a frequency range of 5 to 8 kHz. The moment tensor results show both the creation of hydraulic fractures and the reactivation of natural fractures during the hydraulic stimulations. Our stress inversion based on the inverted moment tensors reveals the alteration of stress regime caused by hydraulic fracture stimulations.
  • Item
    3D Shear Velocity Structure of the Caribbean—Northwestern South America Subduction Zone From Ambient Noise and Ballistic Rayleigh Wave Tomography
    (Wiley, 2024) Miao, Wenpei; Cornthwaite, John; Levander, Alan; Niu, Fenglin; Schmitz, Michael; Li, Guoliang; Dionicio, Viviana; Prieto, German
    The Caribbean-South America subduction zone is a flat subduction zone, with Laramide-style thick-skinned uplifts occurring in the Merida Andes, Sierra de Perija Range, and Santa Marta Massif. Geodetic measurements and historical seismicity show this region is storing strain energy and is capable of a mega-thrust earthquake (M ≥ 8.0). Previous seismic investigations of the lithosphere and upper mantle in this area are either very large scale, very local, or only peripheral to this area; therefore, details of the Caribbean plate subduction geometry beneath the Maracaibo block remain unclear. In this study, we used a new data set acquired by the Caribbean-Merida Andes seismic experiment (CARMA), which comprised 65 temporary broadband stations and 44 permanent stations from the Colombian and Venezuelan national seismic networks. We jointly inverted ambient noise Rayleigh wave Z/H ratios, phase velocities in the 8–30 s band and ballistic Rayleigh wave phase velocities in 30–80 s band to construct a 3-D S-wave velocity model in the area between 75°–65°W and 5°–12°N. The 3-D model reveals a general increase in crust thickness from the trench to the southeast. An anomalous area is the Lake Maracaibo, which is underlaid by the thinnest crystalline crust in the region. This observation may indicate that the Maracaibo block is experiencing a contortion deformation within the crust. We also identified a high velocity anomaly above the subducting Caribbean slab, likely representing a detached piece of eclogitized Caribbean large igneous province from the base of the Maracaibo block. Additionally, our Vs model clearly indicates a slab tear within the subducted Caribbean slab, approximately beneath the Oca-Ancon Fault.
  • Item
    Pliocene–Pleistocene warm-water incursions and water mass changes on the Ross Sea continental shelf (Antarctica) based on foraminifera from IODP Expedition 374
    (Copernicus Publications, 2024) Seidenstein, Julia L.; Leckie, R. Mark; McKay, Robert; De Santis, Laura; Harwood, David; IODP Expedition 374 Scientists
    International Ocean Discovery Program (IODP) Expedition 374 sailed to the Ross Sea in 2018 to reconstruct paleoenvironments, track the history of key water masses, and assess model simulations that show warm-water incursions from the Southern Ocean led to the loss of marine-based Antarctic ice sheets during past interglacials. IODP Site U1523 (water depth 828 m) is located at the continental shelf break, northeast of Pennell Bank on the southeastern flank of Iselin Bank, where it lies beneath the Antarctic Slope Current (ASC). This site is sensitive to warm-water incursions from the Ross Sea Gyre and modified Circumpolar Deep Water (mCDW) today and during times of past warming climate. Multiple incursions of subpolar or temperate planktic foraminifera taxa occurred at Site U1523 after 3.8 Ma and prior to ∼ 1.82 Ma. Many of these warm-water taxa incursions likely represent interglacials of the latest Early Pliocene and Early Pleistocene, including Marine Isotope Stage (MIS) Gi7 to Gi3 (∼ 3.72–3.65 Ma), and Early Pleistocene MIS 91 or 90 (∼ 2.34–2.32 Ma) and MIS 77–67 (∼ 2.03–1.83 Ma) and suggest warmer-than-present conditions and less ice cover in the Ross Sea. However, a moderately resolved age model based on four key events prohibits us from precisely correlating with Marine Isotope Stages established by the LR04 Stack; therefore, these correlations are best estimates. Diatom-rich intervals during the latest Pliocene at Site U1523 include evidence of anomalously warm conditions based on the presence of subtropical and temperate planktic foraminiferal species in what likely correlates with interglacial MIS G17 (∼ 2.95 Ma), and a second interval that likely correlates with MIS KM3 (∼ 3.16 Ma) of the mid-Piacenzian Warm Period. Collectively, these multiple incursions of warmer-water planktic foraminifera provide evidence for polar amplification during super-interglacials of the Pliocene and Early Pleistocene. Higher abundances of planktic and benthic foraminifera during the Mid- to Late Pleistocene associated with interglacials of the MIS 37–31 interval (∼ 1.23–1.07 Ma), MIS 25 (∼ 0.95 Ma), MIS 15 (∼ 0.60 Ma), and MIS 6–5e transition (∼ 0.133–0.126 Ma) also indicate a reduced ice shelf and relatively warm conditions, including multiple warmer interglacials during the Mid-Pleistocene Transition (MPT). A decrease in sedimentation rate after ∼ 1.78 Ma is followed by a major change in benthic foraminiferal biofacies marked by a decrease in Globocassidulina subglobosa and a decrease in mud (< 63 µm) after ∼ 1.5 Ma. Subsequent dominance of Trifarina earlandi biofacies beginning during MIS 15 (∼ 600 ka) indicate progressive strengthening of the Antarctic Slope Current along the shelf edge of the Ross Sea during the mid to Late Pleistocene. A sharp increase in foraminiferal fragmentation after the MPT (∼ 900 ka) and variable abundances of T. earlandi indicate higher productivity, a stronger but variable ASC during interglacials, and/or corrosive waters, suggesting changes in water masses entering (mCDW) and exiting (High Salinity Shelf Water or Dense Shelf Water) the Ross Sea since the MPT.
  • Item
    Ice? Salt? Pressure? Sediment deformation structures as evidence of late-stage shallow groundwater in Gale crater, Mars
    (Geological Society of America, 2024) Banham, Steven G.; Roberts, Amelie L.; Gupta, Sanjeev; Davis, Joel M.; Thompson, Lucy M.; Rubin, David M.; Paar, Gerhard; Siebach, Kirsten L.; Dietrich, William E.; Fraeman, Abigail A.; Vasavada, Ashwin R.
    Persistence of near-surface water during the late evolution of Gale crater, Mars, would have been fundamental for maintaining a habitable environment. Sedimentation in aqueous conditions is evident during the early stages of crater infilling, where accumulation of lower Mount Sharp group strata is characterized by fluviolacustrine sedimentary rocks. The basal unit of the Siccar Point group—the Stimson formation—which unconformably overlies the Mount Sharp group and represents conditions postdating the exhumation of Aeolis Mons, is characterized by accumulation of aeolian strata under arid conditions. Water was largely absent near the surface during its deposition. At the Feòrachas outcrop, discovery of soft sediment deformation structures in aeolian Stimson strata challenges the notion that Gale crater was devoid of water during its later depositional phase. We identified deformed wind-rippled and vertically laminated sandstones, hosted within erosion-resistant ridges forming boxwork patterns. Broadly, these structures are diagnostic of water (as liquid or as ice) in the shallow subsurface. Comparison with Earth analogues suggests formation by subsurface fluid escape, freeze-thaw processes, or evaporite deformation. Regardless of the mechanism, these structures signify the presence of water at or near the surface much later than previously documented and may extend the habitability window in Gale crater.
  • Item
    Monitoring Water Level of a Surficial Aquifer Using Distributed Acoustic Sensing and Ballistic Surface Waves
    (Wiley, 2024) Sobolevskaia, Valeriia; Ajo-Franklin, Jonathan; Cheng, Feng; Dou, Shan; Lindsey, Nathaniel J.; Wagner, Anna
    Groundwater resources play an increasingly crucial role in providing the water required to sustain the environment. However, our understanding of the state of surficial aquifers and their spatiotemporal dynamics remains poor. In this study, we demonstrate how Rayleigh wave velocity variation can be used as a direct indicator of changes in the water level of a surficial aquifer in a discontinuous permafrost environment. Distributed acoustic sensing data, collected on a trenched fiber-optic cable in Fairbanks, AK, was processed using the multichannel analysis of surface waves approach to obtain temporal velocity variations. A semi-permanent surface orbital vibrator was utilized to provide a repeatable source of energy for monitoring. To understand the observed velocity perturbations, we developed a rock physics model (RPM) representing the aquifer with the underlying permafrost and accounting for physical processes associated with water level change. Our analyses demonstrated a strong correlation between precipitation-driven head variation and seismic velocity changes at all recorded frequencies. The proposed model accurately predicted a recorded 3% velocity increase for each 0.5 m of head drop and indicated that the pore pressure effect accounted for approximately 75% of the observed phase velocity change. Surface wave inversion and sensitivity analysis suggested that the high velocity contrast in the permafrost table shifts the surface wave sensitivity toward the first 3 m of soil where hydrological forcing occurs. This case study demonstrates how surface wave analysis combined with an RPM can be used for quantitative interpretation of the acoustic response of surficial aquifers.
  • Item
    Insights into glacial processes from micromorphology of silt-sized sediment
    (Copernicus Publications, 2024) Lepp, Allison P.; Miller, Lauren E.; Anderson, John B.; O'Regan, Matt; Winsborrow, Monica C. M.; Smith, James A.; Hillenbrand, Claus-Dieter; Wellner, Julia S.; Prothro, Lindsay O.; Podolskiy, Evgeny A.
    Silt-rich meltwater plume deposits (MPDs) analyzed from marine sediment cores have elucidated relationships that are clearly connected, yet difficult to constrain, between subglacial hydrology, ice-marginal landforms, and grounding-zone retreat patterns for several glacial catchments. Few attempts have been made to infer details of subglacial hydrology, such as flow regime, geometry of drainage pathways, and mode(s) of sediment transport through time, from grain-scale characteristics of MPDs. Using sediment samples from MPD, till, and grounding-zone proximal diamicton collected offshore of six modern and relict glacial catchments in both hemispheres, we examine grain shape distributions and microtextures (collectively, grain micromorphology) of the silt fraction to explore whether grains are measurably altered from their subglacial sources via meltwater action. We find that 75 % of all imaged grains (n = 9400) can be described by 25 % of the full range of measured shape morphometrics, indicating grain shape homogenization through widespread and efficient abrasive processes in subglacial environments. Although silt grains from MPDs exhibit edge rounding more often than silt grains from tills, grain surface textures indicative of fluvial transport (e.g., v-shaped percussions) occur in only a modest number of grains. Furthermore, MPD grain surfaces retain several textures consistent with transport beneath glacial ice (e.g., straight or arcuate steps, (sub)linear fractures) in comparable abundances to till grains. Significant grain shape alteration in MPDs compared to their till sources is observed in sediments from glacial regions where (1) high-magnitude, potentially catastrophic meltwater drainage events are inferred from marine sediment records and (2) submarine landforms suggest supraglacial melt contributed to the subglacial hydrological budget. This implies that quantifiable grain shape alteration in MPDs could reflect a combination of high-energy flow of subglacial meltwater, persistent sediment entrainment, and/or long sediment transport distances through subglacial drainage pathways. Integrating grain micromorphology into analysis of MPDs in site-specific studies could therefore aid in distinguishing periods of persistent, well-connected subglacial discharge from periods of sluggish or disorganized drainage. In the wider context of deglacial marine sedimentary and bathymetric records, a grain micromorphological approach may bolster our ability to characterize ice response to subglacial meltwater transmission through time. This work additionally demonstrates that glacial and fluvial surface textures are retained on silt-sized quartz grains in adequate amounts for microtexture analysis, which has heretofore been conducted exclusively on the sand fraction. Therefore, grain microtextures can be examined on silt-rich glaciogenic deposits that contain little to no sand as a means to evaluate sediment transport processes.
  • Item
    Identifying rheological regimes within pyroclastic density currents
    (Springer Nature, 2024) Jones, Thomas J.; Shetty, Abhishek; Chalk, Caitlin; Dufek, Josef; Gonnermann, Helge M.
    Pyroclastic density currents (PDCs) are the most lethal of all volcanic hazards. An ongoing challenge is to accurately forecast their run-out distance such that effective mitigation strategies can be implemented. Central to this goal is an understanding of the flow mobility—a quantitative rheological model detailing how the high temperature gas-pyroclast mixtures propagate. This is currently unknown, yet critical to accurately forecast the run-out distance. Here, we use a laboratory apparatus to perform rheological measurements on real gas-pyroclast mixtures at dynamic conditions found in concentrated to intermediate pumice-rich PDCs. We find their rheology to be non-Newtonian featuring (i) a yield stress where deposition occurs; (ii) shear-thinning behavior that promotes channel formation and local increases in velocity and (iii) shear-thickening behavior that promotes decoupling and potential co-PDC plume formation. We provide a universal regime diagram delineating these behaviors and illustrating how flow can transition between them during transport.
  • Item
    Interpretable Structural Model Error Discovery From Sparse Assimilation Increments Using Spectral Bias-Reduced Neural Networks: A Quasi-Geostrophic Turbulence Test Case
    (Wiley, 2024) Mojgani, Rambod; Chattopadhyay, Ashesh; Hassanzadeh, Pedram
    Earth system models suffer from various structural and parametric errors in their representation of nonlinear, multi-scale processes, leading to uncertainties in their long-term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short-term simulations, for example, as differences between the predicted and observed states (analysis increments). With the increase in the availability of high-quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data-hungry, and poorly generalize out-of-distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data-efficient framework that uses sparsity-promoting equation-discovery techniques to learn model errors from analysis increments. Using two-layer quasi-geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations.
  • Item
    Data Imbalance, Uncertainty Quantification, and Transfer Learning in Data-Driven Parameterizations: Lessons From the Emulation of Gravity Wave Momentum Transport in WACCM
    (Wiley, 2024) Sun, Y. Qiang; Pahlavan, Hamid A.; Chattopadhyay, Ashesh; Hassanzadeh, Pedram; Lubis, Sandro W.; Alexander, M. Joan; Gerber, Edwin P.; Sheshadri, Aditi; Guan, Yifei
    Neural networks (NNs) are increasingly used for data-driven subgrid-scale parameterizations in weather and climate models. While NNs are powerful tools for learning complex non-linear relationships from data, there are several challenges in using them for parameterizations. Three of these challenges are (a) data imbalance related to learning rare, often large-amplitude, samples; (b) uncertainty quantification (UQ) of the predictions to provide an accuracy indicator; and (c) generalization to other climates, for example, those with different radiative forcings. Here, we examine the performance of methods for addressing these challenges using NN-based emulators of the Whole Atmosphere Community Climate Model (WACCM) physics-based gravity wave (GW) parameterizations as a test case. WACCM has complex, state-of-the-art parameterizations for orography-, convection-, and front-driven GWs. Convection- and orography-driven GWs have significant data imbalance due to the absence of convection or orography in most grid points. We address data imbalance using resampling and/or weighted loss functions, enabling the successful emulation of parameterizations for all three sources. We demonstrate that three UQ methods (Bayesian NNs, variational auto-encoders, and dropouts) provide ensemble spreads that correspond to accuracy during testing, offering criteria for identifying when an NN gives inaccurate predictions. Finally, we show that the accuracy of these NNs decreases for a warmer climate (4 × CO2). However, their performance is significantly improved by applying transfer learning, for example, re-training only one layer using ∼1% new data from the warmer climate. The findings of this study offer insights for developing reliable and generalizable data-driven parameterizations for various processes, including (but not limited to) GWs.
  • Item
    Helmholtz decomposition with a scalar Poisson equation in elastic anisotropic media
    (Elsevier, 2024) Fang, Xin-Yu; Yao, Gang; Zheng, Qing-Qing; Zhang, Ping-Min; Wu, Di; Niu, Feng-Lin
    P- and S-wave separation plays an important role in elastic reverse-time migration. It can reduce the artifacts caused by crosstalk between different modes and improve image quality. In addition, P- and S-wave separation can also be used to better understand and distinguish wave types in complex media. At present, the methods for separating wave modes in anisotropic media mainly include spatial non-stationary filtering, low-rank approximation, and vector Poisson equation. Most of these methods require multiple Fourier transforms or the calculation of large matrices, which require high computational costs for problems with large scale. In this paper, an efficient method is proposed to separate the wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain. For 2D problems, the computational complexity required by this method is 1/2 of the methods based on solving a vector Poisson equation. Therefore, compared with existing methods based on pseudo-Helmholtz decomposition operators, this method can significantly reduce the computational cost. Numerical examples also show that the P and S waves decomposed by this method not only have the correct amplitude and phase relative to the input wavefield but also can reduce the computational complexity significantly.
  • Item
    Electrothermal mineralization of per- and polyfluoroalkyl substances for soil remediation
    (Springer Nature, 2024) Cheng, Yi; Deng, Bing; Scotland, Phelecia; Eddy, Lucas; Hassan, Arman; Wang, Bo; Silva, Karla J.; Li, Bowen; Wyss, Kevin M.; Ucak-Astarlioglu, Mine G.; Chen, Jinhang; Liu, Qiming; Si, Tengda; Xu, Shichen; Gao, Xiaodong; JeBailey, Khalil; Jana, Debadrita; Torres, Mark Albert; Wong, Michael S.; Yakobson, Boris I.; Griggs, Christopher; McCary, Matthew A.; Zhao, Yufeng; Tour, James M.
    Per- and polyfluoroalkyl substances (PFAS) are persistent and bioaccumulative pollutants that can easily accumulate in soil, posing a threat to environment and human health. Current PFAS degradation processes often suffer from low efficiency, high energy and water consumption, or lack of generality. Here, we develop a rapid electrothermal mineralization (REM) process to remediate PFAS-contaminated soil. With environmentally compatible biochar as the conductive additive, the soil temperature increases to >1000 °C within seconds by current pulse input, converting PFAS to calcium fluoride with inherent calcium compounds in soil. This process is applicable for remediating various PFAS contaminants in soil, with high removal efficiencies ( >99%) and mineralization ratios ( >90%). While retaining soil particle size, composition, water infiltration rate, and cation exchange capacity, REM facilitates an increase of exchangeable nutrient supply and arthropod survival in soil, rendering it superior to the time-consuming calcination approach that severely degrades soil properties. REM is scaled up to remediate soil at two kilograms per batch and promising for large-scale, on-site soil remediation. Life-cycle assessment and techno-economic analysis demonstrate REM as an environmentally friendly and economic process, with a significant reduction of energy consumption, greenhouse gas emission, water consumption, and operation cost, when compared to existing soil remediation practices.