Development of an interpretive simulation tool for the proton radiography technique

dc.citation.articleNumber33302en_US
dc.citation.issueNumber3en_US
dc.citation.journalTitleReview of Scientific Instrumentsen_US
dc.citation.volumeNumber86en_US
dc.contributor.authorLevy, M.C.en_US
dc.contributor.authorRyutov, D.D.en_US
dc.contributor.authorWilks, S.C.en_US
dc.contributor.authorRoss, J.S.en_US
dc.contributor.authorHuntington, C.M.en_US
dc.contributor.authorFiuza, F.en_US
dc.contributor.authorMartinez, D.A.en_US
dc.contributor.authorKugland, N.L.en_US
dc.contributor.authorBaring, M.G.en_US
dc.contributor.authorPark, H.-S.en_US
dc.date.accessioned2017-06-05T17:33:45Zen_US
dc.date.available2017-06-05T17:33:45Zen_US
dc.date.issued2015en_US
dc.description.abstractProton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper, we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution protonradiograph. The present tool’s numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from particle-in-cell or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field “primitives” is also provided. This latter capability allows users to add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagnetic field elements. We show an example application of the tool in connection to experimental observations of the Weibel instability in counterstreaming plasmas, using ∼108 particles generated from a realistic laser-driven point-like proton source, imaging fields which cover volumes of ∼10 mm3. Insights derived from this application show that the tool can support understanding of HED plasmas.en_US
dc.identifier.citationLevy, M.C., Ryutov, D.D., Wilks, S.C., et al.. "Development of an interpretive simulation tool for the proton radiography technique." <i>Review of Scientific Instruments,</i> 86, no. 3 (2015) AIP Publishing LLC.: http://dx.doi.org/10.1063/1.4909536.en_US
dc.identifier.doihttp://dx.doi.org/10.1063/1.4909536en_US
dc.identifier.urihttps://hdl.handle.net/1911/94764en_US
dc.language.isoengen_US
dc.publisherAIP Publishing LLC.en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.titleDevelopment of an interpretive simulation tool for the proton radiography techniqueen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
simulation-tool.pdf
Size:
27.13 MB
Format:
Adobe Portable Document Format