CONSTRAINING THE HIGH-ENERGY EMISSION FROM GAMMA-RAY BURSTS WITH FERMI

Date
2012
Journal Title
Journal ISSN
Volume Title
Publisher
The American Astronomical Society
Abstract

We examine 288 gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope’s Gamma-ray Burst Monitor (GBM) that fell within the field of view of Fermi’s Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV.We report the photon flux upper limits in the 0.1–10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst.We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the νFν spectra (Epk). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above Epk than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cutoff in their high-energy spectra, which if assumed to be due to γγ attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Baring, M.G. and The Fermi Large Area Telescope Team. "CONSTRAINING THE HIGH-ENERGY EMISSION FROM GAMMA-RAY BURSTS WITH FERMI." The Astrophysical Journal, 754, (2012) The American Astronomical Society: 121-141. http://dx.doi.org/10.1088/0004-637X/754/2/121.

Has part(s)
Forms part of
Rights
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Link to license
Citable link to this page