The energetics and evolution of oxidoreductases in deep time

dc.citation.firstpage52
dc.citation.issueNumber1
dc.citation.journalTitleProteins: Structure, Function, and Bioinformatics
dc.citation.lastpage59
dc.citation.volumeNumber92
dc.contributor.authorMcGuinness, Kenneth N.
dc.contributor.authorFehon, Nolan
dc.contributor.authorFeehan, Ryan
dc.contributor.authorMiller, Michelle
dc.contributor.authorMutter, Andrew C.
dc.contributor.authorRybak, Laryssa A.
dc.contributor.authorNam, Justin
dc.contributor.authorAbuSalim, Jenna E.
dc.contributor.authorAtkinson, Joshua T.
dc.contributor.authorHeidari, Hirbod
dc.contributor.authorLosada, Natalie
dc.contributor.authorKim, J. Dongun
dc.contributor.authorKoder, Ronald L.
dc.contributor.authorLu, Yi
dc.contributor.authorSilberg, Jonathan J.
dc.contributor.authorSlusky, Joanna S. G.
dc.contributor.authorFalkowski, Paul G.
dc.contributor.authorNanda, Vikas
dc.date.accessioned2024-05-03T15:51:09Z
dc.date.available2024-05-03T15:51:09Z
dc.date.issued2024
dc.description.abstractThe core metabolic reactions of life drive electrons through a class of redox protein enzymes, the oxidoreductases. The energetics of electron flow is determined by the redox potentials of organic and inorganic cofactors as tuned by the protein environment. Understanding how protein structure affects oxidation–reduction energetics is crucial for studying metabolism, creating bioelectronic systems, and tracing the history of biological energy utilization on Earth. We constructed ProtReDox (https://protein-redox-potential.web.app), a manually curated database of experimentally determined redox potentials. With over 500 measurements, we can begin to identify how proteins modulate oxidation–reduction energetics across the tree of life. By mapping redox potentials onto networks of oxidoreductase fold evolution, we can infer the evolution of electron transfer energetics over deep time. ProtReDox is designed to include user-contributed submissions with the intention of making it a valuable resource for researchers in this field.
dc.identifier.citationMcGuinness, K. N., Fehon, N., Feehan, R., Miller, M., Mutter, A. C., Rybak, L. A., Nam, J., AbuSalim, J. E., Atkinson, J. T., Heidari, H., Losada, N., Kim, J. D., Koder, R. L., Lu, Y., Silberg, J. J., Slusky, J. S. G., Falkowski, P. G., & Nanda, V. (2024). The energetics and evolution of oxidoreductases in deep time. Proteins: Structure, Function, and Bioinformatics, 92(1), 52–59. https://doi.org/10.1002/prot.26563
dc.identifier.digitalThe-energetics-and-evolution-of-oxidoreductases-in-deep-time
dc.identifier.doihttps://doi.org/10.1002/prot.26563
dc.identifier.urihttps://hdl.handle.net/1911/115543
dc.language.isoeng
dc.publisherWiley
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleThe energetics and evolution of oxidoreductases in deep time
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpublisher version
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The-energetics-and-evolution-of-oxidoreductases-in-deep-time.pdf
Size:
1.9 MB
Format:
Adobe Portable Document Format