c-axis pressure-induced antiferromagnetic order in optimally P-doped BaFe2(As0.70P0.30)2 superconductor

Abstract

Superconductivity in BaFe2(As1−xPx)2 iron pnictides emerges when its in-plane two-dimensional (2D) orthorhombic lattice distortion associated with nematic phase at Ts and three-dimensional (3D) collinear antiferromagnetic order at TN (Ts = TN) are gradually suppressed with increasing x, reaching optimal superconductivity around x = 0.30 with Tc ≈ 30 K. Here we show that a moderate uniaxial pressure along the c-axis in BaFe2(As0.70P0.30)2 spontaneously induces a 3D collinear antiferromagnetic order with TN = Ts > 30 K, while only slightly suppresses Tc. Although a ~ 400 MPa pressure compresses the c-axis lattice while expanding the in-plane lattice and increasing the nearest-neighbor Fe–Fe distance, it barely changes the average iron-pnictogen height in BaFe2(As0.70P0.30)2. Therefore, the pressure-induced antiferromagnetic order must arise from a strong in-plane magnetoelastic coupling, suggesting that the 2D nematic phase is a competing state with superconductivity.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Hu, Ding, Wang, Weiyi, Zhang, Wenliang, et al.. "c-axis pressure-induced antiferromagnetic order in optimally P-doped BaFe2(As0.70P0.30)2 superconductor." npj Quantum Materials, 3, (2018) Springer Nature: https://doi.org/10.1038/s41535-018-0122-3.

Has part(s)
Forms part of
Rights
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Citable link to this page