Active quantum plasmonics

dc.citation.articleNumbere1501095en_US
dc.citation.issueNumber11en_US
dc.citation.journalTitleScience Advancesen_US
dc.citation.volumeNumber1en_US
dc.contributor.authorMarinica, Dana Codrutaen_US
dc.contributor.authorZapata, Marioen_US
dc.contributor.authorNordlander, Peteren_US
dc.contributor.authorKazansky, Andrey K.en_US
dc.contributor.authorEchenique, Pedro M.en_US
dc.contributor.authorAizpurua, Javieren_US
dc.contributor.authorBorisov, Andrei G.en_US
dc.contributor.orgLaboratory for Nanophotonicsen_US
dc.date.accessioned2017-01-30T22:36:08Zen_US
dc.date.available2017-01-30T22:36:08Zen_US
dc.date.issued2015en_US
dc.description.abstractThe ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies, which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics establishes a new platform for many practical applications in optoelectronics.en_US
dc.identifier.citationMarinica, Dana Codruta, Zapata, Mario, Nordlander, Peter, et al.. "Active quantum plasmonics." <i>Science Advances,</i> 1, no. 11 (2015) AAAS: http://dx.doi.org/10.1126/sciadv.1501095.en_US
dc.identifier.doihttp://dx.doi.org/10.1126/sciadv.1501095en_US
dc.identifier.urihttps://hdl.handle.net/1911/93829en_US
dc.language.isoengen_US
dc.publisherAAASen_US
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.subject.keywordphysicsen_US
dc.subject.keywordplasmonicsen_US
dc.subject.keywordquantum plasmonicsen_US
dc.subject.keywordapplied optoelectronicsen_US
dc.titleActive quantum plasmonicsen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
e1501095.full.pdf
Size:
804.96 KB
Format:
Adobe Portable Document Format
Description: