Simulating radiative magnetohydrodynamical flows with ASTROBEAR: implementation and applications of non-equilibrium cooling

dc.citation.firstpage3098en_US
dc.citation.issueNumber3en_US
dc.citation.journalTitleMonthly Notices of the Royal Astronomical Societyen_US
dc.citation.lastpage3107en_US
dc.citation.volumeNumber481en_US
dc.contributor.authorHansen, E.C.en_US
dc.contributor.authorHartigan, P.en_US
dc.contributor.authorFrank, A.en_US
dc.contributor.authorWright, A.en_US
dc.contributor.authorRaymond, J.C.en_US
dc.date.accessioned2018-11-15T17:16:15Zen_US
dc.date.available2018-11-15T17:16:15Zen_US
dc.date.issued2018en_US
dc.description.abstractRadiative cooling plays a crucial role in the dynamics of many astrophysical flows, and is particularly important in the dense shocked gas within Herbig-Haro (HH) objects and stellar jets. Simulating cooling processes accurately is necessary to compare numerical simulations with existing and planned observations of HH objects, such as those from the Hubble Space Telescope and the James Webb Space Telescope. In this paper, we discuss a new, non-equilibrium cooling scheme we have implemented into the three-dimensional magnetohydrodynamic (MHD) code ASTROBEAR. The new cooling function includes ionization, recombination, and excitation of all the important atomic species that cool below 10 000 K. We tested the routine by comparing its predictions with those from the well-tested one-dimensional Cox–Raymond shock code (Raymond 1979). The results show that ASTROBEAR accurately tracks the ionization fraction, temperature, and other MHD variables for all low-velocity (≲90 km s−1) magnetized radiative shock waves. The new routine allows us to predict synthetic emission maps in all the bright forbidden and permitted lines observed in stellar jets, including H α, [N II], [O I], and [S II]. We present an example as to how these synthetic maps facilitate a direct comparison with narrowband images of HH objects.en_US
dc.identifier.citationHansen, E.C., Hartigan, P., Frank, A., et al.. "Simulating radiative magnetohydrodynamical flows with ASTROBEAR: implementation and applications of non-equilibrium cooling." <i>Monthly Notices of the Royal Astronomical Society,</i> 481, no. 3 (2018) Oxford University Press: 3098-3107. https://doi.org/10.1093/mnras/sty2471.en_US
dc.identifier.digitalsty2471en_US
dc.identifier.doihttps://doi.org/10.1093/mnras/sty2471en_US
dc.identifier.urihttps://hdl.handle.net/1911/103346en_US
dc.language.isoengen_US
dc.publisherOxford University Pressen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.subject.keywordline: formationen_US
dc.subject.keyword(magnetohydrodynamics) MHDen_US
dc.subject.keywordradiation mechanisms: thermalen_US
dc.subject.keywordmethods: numericalen_US
dc.subject.keyword(ISM:) Herbig-Haro objectsen_US
dc.subject.keywordISM: jets and outflowsen_US
dc.titleSimulating radiative magnetohydrodynamical flows with ASTROBEAR: implementation and applications of non-equilibrium coolingen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sty2471.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format