Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA
dc.citation.articleNumber | e2202239119 | en_US |
dc.citation.issueNumber | 32 | en_US |
dc.citation.journalTitle | Proceedings of the National Academy of Sciences | en_US |
dc.citation.volumeNumber | 119 | en_US |
dc.contributor.author | Jin, Shikai | en_US |
dc.contributor.author | Bueno, Carlos | en_US |
dc.contributor.author | Lu, Wei | en_US |
dc.contributor.author | Wang, Qian | en_US |
dc.contributor.author | Chen, Mingchen | en_US |
dc.contributor.author | Chen, Xun | en_US |
dc.contributor.author | Wolynes, Peter G. | en_US |
dc.contributor.author | Gao, Yang | en_US |
dc.contributor.org | Center for Theoretical Biological Physics | en_US |
dc.date.accessioned | 2022-09-01T14:18:23Z | en_US |
dc.date.available | 2022-09-01T14:18:23Z | en_US |
dc.date.issued | 2022 | en_US |
dc.description.abstract | Bacteriophage T7 gp4 helicase has served as a model system for understanding mechanisms of hexameric replicative helicase translocation. The mechanistic basis of how nucleoside 5′-triphosphate hydrolysis and translocation of gp4 helicase are coupled is not fully resolved. Here, we used a thermodynamically benchmarked coarse-grained protein force field, Associative memory, Water mediated, Structure and Energy Model (AWSEM), with the single-stranded DNA (ssDNA) force field 3SPN.2C to investigate gp4 translocation. We found that the adenosine 5′-triphosphate (ATP) at the subunit interface stabilizes the subunit–subunit interaction and inhibits subunit translocation. Hydrolysis of ATP to adenosine 5′-diphosphate enables the translocation of one subunit, and new ATP binding at the new subunit interface finalizes the subunit translocation. The LoopD2 and the N-terminal primase domain provide transient protein–protein and protein–DNA interactions that facilitate the large-scale subunit movement. The simulations of gp4 helicase both validate our coarse-grained protein–ssDNA force field and elucidate the molecular basis of replicative helicase translocation. | en_US |
dc.identifier.citation | Jin, Shikai, Bueno, Carlos, Lu, Wei, et al.. "Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA." <i>Proceedings of the National Academy of Sciences,</i> 119, no. 32 (2022) National Academy of Sciences: https://doi.org/10.1073/pnas.2202239119. | en_US |
dc.identifier.digital | pnas-2202239119 | en_US |
dc.identifier.doi | https://doi.org/10.1073/pnas.2202239119 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/113171 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | National Academy of Sciences | en_US |
dc.rights | This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.title | Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | publisher version | en_US |
Files
Original bundle
1 - 1 of 1