Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence

dc.citation.articleNumbereabn0939
dc.citation.issueNumber16
dc.citation.journalTitleScience Advances
dc.citation.volumeNumber8
dc.contributor.authorLee, Dongju
dc.contributor.authorKim, Seo Gyun
dc.contributor.authorHong, Seungki
dc.contributor.authorMadrona, Cristina
dc.contributor.authorOh, Yuna
dc.contributor.authorPark, Min
dc.contributor.authorKomatsu, Natsumi
dc.contributor.authorTaylor, Lauren W.
dc.contributor.authorChung, Bongjin
dc.contributor.authorKim, Jungwon
dc.contributor.authorHwang, Jun Yeon
dc.contributor.authorYu, Jaesang
dc.contributor.authorLee, Dong Su
dc.contributor.authorJeong, Hyeon Su
dc.contributor.authorYou, Nam Ho
dc.contributor.authorKim, Nam Dong
dc.contributor.authorKim, Dae-Yoon
dc.contributor.authorLee, Heon Sang
dc.contributor.authorLee, Kun-Hong
dc.contributor.authorKono, Junichiro
dc.contributor.authorWehmeyer, Geoff
dc.contributor.authorPasquali, Matteo
dc.contributor.authorVilatela, Juan J.
dc.contributor.authorRyu, Seongwoo
dc.contributor.authorKu, Bon-Cheol
dc.contributor.orgThe Carbon Hub
dc.date.accessioned2022-05-25T17:37:48Z
dc.date.available2022-05-25T17:37:48Z
dc.date.issued2022
dc.description.abstractTheoretical considerations suggest that the strength of carbon nanotube (CNT) fibers be exceptional; however, their mechanical performance values are much lower than the theoretical values. To achieve macroscopic fibers with ultrahigh performance, we developed a method to form multidimensional nanostructures by coalescence of individual nanotubes. The highly aligned wet-spun fibers of single- or double-walled nanotube bundles were graphitized to induce nanotube collapse and multi-inner walled structures. These advanced nanostructures formed a network of interconnected, close-packed graphitic domains. Their near-perfect alignment and high longitudinal crystallinity that increased the shear strength between CNTs while retaining notable flexibility. The resulting fibers have an exceptional combination of high tensile strength (6.57 GPa), modulus (629 GPa), thermal conductivity (482 W/m·K), and electrical conductivity (2.2 MS/m), thereby overcoming the limits associated with conventional synthetic fibers.
dc.identifier.citationLee, Dongju, Kim, Seo Gyun, Hong, Seungki, et al.. "Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence." <i>Science Advances,</i> 8, no. 16 (2022) AAAS: https://doi.org/10.1126/sciadv.abn0939.
dc.identifier.digitalsciadv-abn0939
dc.identifier.doihttps://doi.org/10.1126/sciadv.abn0939
dc.identifier.urihttps://hdl.handle.net/1911/112427
dc.language.isoeng
dc.publisherAAAS
dc.rightsDistributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.titleUltrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpublisher version
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sciadv-abn0939.pdf
Size:
2.16 MB
Format:
Adobe Portable Document Format