Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence

dc.citation.articleNumbereabn0939en_US
dc.citation.issueNumber16en_US
dc.citation.journalTitleScience Advancesen_US
dc.citation.volumeNumber8en_US
dc.contributor.authorLee, Dongjuen_US
dc.contributor.authorKim, Seo Gyunen_US
dc.contributor.authorHong, Seungkien_US
dc.contributor.authorMadrona, Cristinaen_US
dc.contributor.authorOh, Yunaen_US
dc.contributor.authorPark, Minen_US
dc.contributor.authorKomatsu, Natsumien_US
dc.contributor.authorTaylor, Lauren W.en_US
dc.contributor.authorChung, Bongjinen_US
dc.contributor.authorKim, Jungwonen_US
dc.contributor.authorHwang, Jun Yeonen_US
dc.contributor.authorYu, Jaesangen_US
dc.contributor.authorLee, Dong Suen_US
dc.contributor.authorJeong, Hyeon Suen_US
dc.contributor.authorYou, Nam Hoen_US
dc.contributor.authorKim, Nam Dongen_US
dc.contributor.authorKim, Dae-Yoonen_US
dc.contributor.authorLee, Heon Sangen_US
dc.contributor.authorLee, Kun-Hongen_US
dc.contributor.authorKono, Junichiroen_US
dc.contributor.authorWehmeyer, Geoffen_US
dc.contributor.authorPasquali, Matteoen_US
dc.contributor.authorVilatela, Juan J.en_US
dc.contributor.authorRyu, Seongwooen_US
dc.contributor.authorKu, Bon-Cheolen_US
dc.contributor.orgThe Carbon Huben_US
dc.date.accessioned2022-05-25T17:37:48Zen_US
dc.date.available2022-05-25T17:37:48Zen_US
dc.date.issued2022en_US
dc.description.abstractTheoretical considerations suggest that the strength of carbon nanotube (CNT) fibers be exceptional; however, their mechanical performance values are much lower than the theoretical values. To achieve macroscopic fibers with ultrahigh performance, we developed a method to form multidimensional nanostructures by coalescence of individual nanotubes. The highly aligned wet-spun fibers of single- or double-walled nanotube bundles were graphitized to induce nanotube collapse and multi-inner walled structures. These advanced nanostructures formed a network of interconnected, close-packed graphitic domains. Their near-perfect alignment and high longitudinal crystallinity that increased the shear strength between CNTs while retaining notable flexibility. The resulting fibers have an exceptional combination of high tensile strength (6.57 GPa), modulus (629 GPa), thermal conductivity (482 W/m·K), and electrical conductivity (2.2 MS/m), thereby overcoming the limits associated with conventional synthetic fibers.en_US
dc.identifier.citationLee, Dongju, Kim, Seo Gyun, Hong, Seungki, et al.. "Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence." <i>Science Advances,</i> 8, no. 16 (2022) AAAS: https://doi.org/10.1126/sciadv.abn0939.en_US
dc.identifier.digitalsciadv-abn0939en_US
dc.identifier.doihttps://doi.org/10.1126/sciadv.abn0939en_US
dc.identifier.urihttps://hdl.handle.net/1911/112427en_US
dc.language.isoengen_US
dc.publisherAAASen_US
dc.rightsDistributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.titleUltrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescenceen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sciadv-abn0939.pdf
Size:
2.16 MB
Format:
Adobe Portable Document Format