Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema

Abstract

Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c+ lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

You, Ran, Lu, Wen, Shan, Ming, et al.. "Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema." eLife, 4, (2015) eLife Sciences Publications Ltd.: e09623. http://dx.doi.org/10.7554/eLife.09623.

Has part(s)
Forms part of
Rights
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Citable link to this page