Heavy fermion quantum criticality at dilute carrier limit in CeNi2−δ(As1−xPx)2

Abstract

We study the quantum phase transitions in the nickel pnctides, CeNi2−δ(As1−xPx)2 (δ ≈ 0.07–0.22) polycrystalline samples. This series displays the distinct heavy fermion behavior in the rarely studied parameter regime of dilute carrier limit. We systematically investigate the magnetization, specific heat and electrical transport down to low temperatures. Upon increasing the P-content, the antiferromagnetic order of the Ce-4f moment is suppressed continuously and vanishes at xc ~ 0.55. At this doping, the temperature dependences of the specific heat and longitudinal resistivity display non-Fermi liquid behavior. Both the residual resistivity ρ0 and the Sommerfeld coefficient γ0 are sharply peaked around xc. When the P-content reaches close to 100%, we observe a clear low-temperature crossover into the Fermi liquid regime. In contrast to what happens in the parent compound x = 0.0 as a function of pressure, we find a surprising result that the non-Fermi liquid behavior persists over a nonzero range of doping concentration, xc < x < 0.9. In this doping range, at the lowest measured temperatures, the temperature dependence of the specific-heat coefficient is logarithmically divergent and that of the electrical resistivity is linear. We discuss the properties of CeNi2−δ(As1−xPx)2 in comparison with those of its 1111 counterpart, CeNi(As1−xPx)O. Our results indicate a non-Fermi liquid phase in the global phase diagram of heavy fermion metals.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Chen, Jian, Wang, Zhen, Li, Yupeng, et al.. "Heavy fermion quantum criticality at dilute carrier limit in CeNi2−δ(As1−xPx)2." Scientific Reports, 9, (2019) Springer Nature: https://doi.org/10.1038/s41598-019-48662-8.

Has part(s)
Forms part of
Rights
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Citable link to this page