Understanding the physics of DNA using nanoscale single-molecule manipulation

dc.citation.firstpage576en_US
dc.citation.issueNumber5en_US
dc.citation.journalTitleFrontiers of Physicsen_US
dc.citation.lastpage581en_US
dc.citation.volumeNumber7en_US
dc.contributor.authorFrey, Eric W.en_US
dc.contributor.authorGooding, Ashton A.en_US
dc.contributor.authorWijeratne, Sitaraen_US
dc.contributor.authorKiang, Ching-Hwaen_US
dc.date.accessioned2014-12-15T20:35:09Zen_US
dc.date.available2014-12-15T20:35:09Zen_US
dc.date.issued2012en_US
dc.description.abstractProcesses for decoding the genetic information in cells, including transcription, replication, recombination and repair, involve the deformation of DNA from its equilibrium structures such as bending, stretching, twisting, and unzipping of the double helix. Single-molecule manipulation techniques have made it possible to control DNA conformation and simultaneously detect the induced changes, revealing a rich variety of mechanically-induced conformational changes and thermodynamic states. These single-molecule techniques helped us to reveal the physics of DNA and the processes involved in the passing on of the genetic code.en_US
dc.identifier.citationFrey, Eric W., Gooding, Ashton A., Wijeratne, Sitara, et al.. "Understanding the physics of DNA using nanoscale single-molecule manipulation." <i>Frontiers of Physics,</i> 7, no. 5 (2012) Springer: 576-581. http://dx.doi.org/10.1007/s11467-012-0261-0.en_US
dc.identifier.doihttp://dx.doi.org/10.1007/s11467-012-0261-0en_US
dc.identifier.urihttps://hdl.handle.net/1911/78756en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Springer.en_US
dc.subject.keywordsingle-molecule manipulationen_US
dc.subject.keywordphysics of DNAen_US
dc.titleUnderstanding the physics of DNA using nanoscale single-molecule manipulationen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms436630.pdf
Size:
984.88 KB
Format:
Adobe Portable Document Format
Description: