Switching the spin cycloid in BiFeO3 with an electric field

dc.citation.articleNumber2903en_US
dc.citation.journalTitleNature Communicationsen_US
dc.citation.volumeNumber15en_US
dc.contributor.authorMeisenheimer, Peteren_US
dc.contributor.authorMoore, Guyen_US
dc.contributor.authorZhou, Shiyuen_US
dc.contributor.authorZhang, Hongruien_US
dc.contributor.authorHuang, Xiaoxien_US
dc.contributor.authorHusain, Sajiden_US
dc.contributor.authorChen, Xianzheen_US
dc.contributor.authorMartin, Lane W.en_US
dc.contributor.authorPersson, Kristin A.en_US
dc.contributor.authorGriffin, Sinéaden_US
dc.contributor.authorCaretta, Lucasen_US
dc.contributor.authorStevenson, Paulen_US
dc.contributor.authorRamesh, Ramamoorthyen_US
dc.contributor.orgRice Advanced Materials Instituteen_US
dc.date.accessioned2024-07-25T20:55:18Zen_US
dc.date.available2024-07-25T20:55:18Zen_US
dc.date.issued2024en_US
dc.description.abstractBismuth ferrite (BiFeO3) is a multiferroic material that exhibits both ferroelectricity and canted antiferromagnetism at room temperature, making it a unique candidate in the development of electric-field controllable magnetic devices. The magnetic moments in BiFeO3 are arranged into a spin cycloid, resulting in unique magnetic properties which are tied to the ferroelectric order. Previous understanding of this coupling has relied on average, mesoscale measurements. Using nitrogen vacancy-based diamond magnetometry, we observe the magnetic spin cycloid structure of BiFeO3 in real space. This structure is magnetoelectrically coupled through symmetry to the ferroelectric polarization and this relationship is maintained through electric field switching. Through a combination of in-plane and out-of-plane electrical switching, coupled with ab initio studies, we have discovered that the epitaxy from the substrate imposes a magnetoelastic anisotropy on the spin cycloid, which establishes preferred cycloid propagation directions. The energy landscape of the cycloid is shaped by both the ferroelectric degree of freedom and strain-induced anisotropy, restricting the spin spiral propagation vector to changes to specific switching events.en_US
dc.identifier.citationMeisenheimer, P., Moore, G., Zhou, S., Zhang, H., Huang, X., Husain, S., Chen, X., Martin, L. W., Persson, K. A., Griffin, S., Caretta, L., Stevenson, P., & Ramesh, R. (2024). Switching the spin cycloid in BiFeO3 with an electric field. Nature Communications, 15(1), 2903. https://doi.org/10.1038/s41467-024-47232-5en_US
dc.identifier.digitals41467-024-47232-5en_US
dc.identifier.doihttps://doi.org/10.1038/s41467-024-47232-5en_US
dc.identifier.urihttps://hdl.handle.net/1911/117522en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license.  Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleSwitching the spin cycloid in BiFeO3 with an electric fielden_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-024-47232-5.pdf
Size:
3.46 MB
Format:
Adobe Portable Document Format