A Simple and Rapid Method of Forming Double-Sided TiO2 Nanotube Arrays

Abstract

Highly ordered TiO2 nanostructures, known as nanotube arrays (NTAs), exhibit potential in various energy, chemical sensing, and biomedical applications. Owing to its simplicity and high degree of control, titanium anodization serves as the prevailing NTA synthesis method. However, the practicality of this approach is marred by sluggish and inconsistent growth rates, on the order of 10 nm min−1. Growth rates strongly depend on the electrolyte conductivity, yet most reports neglect to consider this property as a measured and controllable parameter. Here, we have systematically determined a broad set of conditions (at 60 V applied potential, elevated temperatures) that allow researchers to fabricate NTAs quickly and simply. By modulating conductivity through variation of bulk electrolyte temperature and the controlled addition of several hydroxy acid species, we achieve consistent accelerated growth up to 10 times faster than traditional methods. We find that regulating the solution conductivity within a desired region (e. g., ∼800–1000 μS cm−1) enabled the fabrication of double-sided NTA layers of around 10 μm and 90 μm NTA in 10 and 180 min, respectively.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Conrad, Christian L., Elias, Welman C., Garcia-Segura, Sergi, et al.. "A Simple and Rapid Method of Forming Double-Sided TiO2 Nanotube Arrays." ChemElectroChem, 9, no. 7 (2022) Wiley: https://doi.org/10.1002/celc.202200081.

Has part(s)
Forms part of
Rights
This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Wiley.
Link to license
Citable link to this page